Allen-Bradley E300 User Manual

Allen-Bradley E300 User Manual

Electronic overload relay
Hide thumbs Also See for E300:
Table of Contents
User Manual
E300 Electronic Overload Relay
Bulletin Numbers 193, 592
Table of Contents
loading

Summary of Contents for Allen-Bradley E300

  • Page 1 User Manual E300 Electronic Overload Relay Bulletin Numbers 193, 592...
  • Page 2 Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE). Allen-Bradley, Rockwell Software, DeviceLogix, RS Logix 5000, Studio 5000, and Rockwell Automation are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.
  • Page 3: Table Of Contents

    Table of Contents Preface Terminology........... . . 15 Additional Resources .
  • Page 4 Table of Contents Expansion Bus Network Installation ....... 32 Starter Assembly ..........34 100-C09…-C55 Starter Assembly Installation .
  • Page 5 Table of Contents Administration Mode ........77 Ready Mode .
  • Page 6 Table of Contents User-defined Screen 2 ........115 User-defined Screen 3 .
  • Page 7 Table of Contents Reversing Starter Operating Modes ....... 205 Reversing Starter (Network) ....... . . 205 Reversing Starter (Network) with Feedback .
  • Page 8 Table of Contents Frequency Protection ........378 Power-based Protection .
  • Page 9 Table of Contents Device Monitor ..........487 Percent Thermal Capacity Utilized .
  • Page 10 Table of Contents Current Imbalance......... . . 509 Voltage Monitor .
  • Page 11 Table of Contents kVARh Net 10^9 ......... . . 527 kVARh Net 10^6 .
  • Page 12 Offline E300 relay Logix Integration with Add-on Profile ..593 Offline E300 relay Integration with a Generic Profile ... 599 E-mail/Text........... . . 605 E-mail Configuration .
  • Page 13 E300 Wiring Configurations........669...
  • Page 14 Table of Contents Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 15: Preface

    Preface This manual describes how to install, set up, operate, and troubleshoot the E300™ Electronic Overload Relay. Terminology Throughout this manual, we may refer to the E300™ Electronic Overload Relay as “the E300 relay”. This term may be used interchangeably with “E300 electronic overload relay”;...
  • Page 16 Preface Notes: Rockwell Automation Publication XXXX-X.X.X - Month Year...
  • Page 17: Product Overview

    0.5…65,000 A. Its modular design, communication options, diagnostic information, simplified wiring, and integration into Logix make the E300 relay the ideal overload for motor control applications in an automation system. The E300 relay provides flexibility, reduces engineering time, and maximizes uptime for important motor starter applications.
  • Page 18: Diagnostic Information

    • Trip Snapshot Simplified Wiring The E300 relay provides an easy means to mount to both IEC and NEMA Allen-Bradley® contactors. A contactor coil adapter is available for the 100-C contactor, which allows you to create a functional motor starter with only two control wires.
  • Page 19: Catalog Number Explanation

    Product Overview Chapter 1 Catalog Number E300 Electronic Overload Relay modules have their own catalog number. Explanation Sensing Module 193 - ESM - VIG - 30A - C23 Sensing Current Range Module Type Sensing Module Type Bulletin Number VIG Current, Ground Fault Current, ...
  • Page 20: Digital Expansion Module

    Chapter 1 Product Overview Digital Expansion Module 193 - EXP - DIO - 42 - 120 I/O Count Communication Type Module Type I/O Type Bulletin Number 42 4 Inputs / 2 Relay Outputs 120 110…120V AC, 50/60 Hz Inputs 193 IEC Overload Relay EXP Expansion Module DIO Digital I/O 240 220…240V AC, 50/60 Hz Inputs...
  • Page 21: Module Description

    Product Overview Chapter 1 Module Description The E300 relay is comprised of three modules. All three modules are required to make a functional overload relay. • Sensing Module • Control Module • Communication Module Sensing Module Figure 1 - Sensing Module The sensing module electronically samples data about the current, voltage, power, and energy that are consumed by the electric motor internal to the module.
  • Page 22: Control Module

    Control Module Figure 2 - Control Module The control module is the heart of the E300 relay and can attach to any sensing module. The control module performs all protection and motor control algorithms and contains the native I/O for the system. The control module has two varieties: •...
  • Page 23: Optional Add-On Modules

    Optional Add-On Modules Optional Expansion I/O The E300 relay allows you to add more digital and analog I/O to the system via the E300 relay Expansion Bus if the native I/O count is not sufficient for the application on the base relay. You can add any combination of up to four Digital I/O Expansion Modules that have four inputs (120V AC, 240V AC, or 24V DC) and two relay outputs.
  • Page 24: Optional Operator Station

    Station or a Diagnostic Station. Both types of operator stations mount into a standard 22 mm push button knockout, and they provide diagnostic status indicators that allow you to view the status of the E300 relay from the outside of an electrical enclosure. Both operator stations provide push buttons that can be used for motor control logic, and they both can be used to upload and download parameter configuration data from the base relay.
  • Page 25: Protection Features

    • Overcurrent – load stall • Start Inhibit (66) Ground Fault Current-based Protection The E300 relay sensing modules and control modules with a ground fault current option provides the following motor protection function: • Ground Fault – zero sequence method (50N)
  • Page 26: Thermal-Based Protection

    • Thermistor – PTC (49) • Stator Protection – RTD (49) • Bearing Protection – RTD (38) Applications The E300 relay can be used with the following across the line starter applications: • Non-reversing starter • Reversing starter • Wye (Star) / Delta starter •...
  • Page 27: Installation And Wiring

    Storing Keep the E300 relay in its shipping container before installation. If you will not use the equipment immediately, you must store it according to the following instructions to maintain warranty coverage: •...
  • Page 28: General Precautions

    Chapter 2 Installation and Wiring General Precautions If the E300 relay is being deployed in an environment with an ambient temperature greater than 30 °C (86 °F), see the Environmental Specifications on page 626 for the appropriate temperature derating. In addition to the specific precautions listed throughout this manual, the following general statements must be observed.
  • Page 29: Base Relay Assembly

    Installation and Wiring Chapter 2 ATTENTION: The earth ground terminal of the E300 relay shall be connected to a solid earth ground via a low-impedance connection. Base Relay Assembly The following section illustrates the E300 relay base relay assembly instructions.
  • Page 30: Communication Module To Control Module Assembly

    Chapter 2 Installation and Wiring Communication Module to You can connect any E300 relay Communication Module to any E300 relay Control Module. Figure 7 shows the steps required to make this connection. Control Module Assembly Figure 7 - Communication Module to Control Module Assembly...
  • Page 31: Expansion Bus Peripherals

    Installation and Wiring Chapter 2 Expansion Bus Peripherals The E300 relay offers a range of Expansion Digital and Analog I/O modules that simply connect to the E300 relay’s Expansion Bus. Figure 8 - Expansion Bus Peripherals Removable I/O Terminals Status LED...
  • Page 32: Expansion Bus Operator Station Installation

    (15 lb-in) 800F-AW2 Expansion Bus Network The E300 relay supports up to (4) Expansion Digital I/O modules, (4) Expansion Analog I/O modules, and (1) Operation Station. The E300 Base Installation Relay can supply enough power for (1) Expansion Digital I/O module and (1) Operator Station.
  • Page 33 Expansion Bus cable to the Output Port of the previous Expansion Module and into the Input Port of the additional Expansion Module. The Operator Station is the last device on the E300 relay Expansion Bus; it only has an Input Port with an internal Expansion Bus terminating resistor.
  • Page 34: Starter Assembly

    Chapter 2 Installation and Wiring Starter Assembly The following illustrations show how to assemble an E300 relay as a motor starter with an Allen-Bradley Bulletin 100-C contactor. 100-C09…-C55 Starter Assembly Installation The starter assembly installation instructions are for use with E300 relay Sensing Module catalog numbers 193-ESM-___-___-C23 and 193-ESM-___-___-C55 Figure 13 - 100-C09…-C55 Starter Assembly Installation...
  • Page 35: 100-C60

    Installation and Wiring Chapter 2 100-C60…-C97 Starter Assembly Installation The starter assembly installation instructions are for use with E300 relay Sensing Module catalog numbers 193-ESM-___-___-C97 Figure 14 - 100-C60…-C97 Starter Assembly Installation 0.79 - 1.24 Nm 7 -11 lb-in 0.79 - 1.24 N•m 4 N•m, 35 lb-in...
  • Page 36: 100-D115

    Chapter 2 Installation and Wiring 100-D115…-D180 Starter Assembly Installation The starter assembly installation instructions are for use with E300 relay Sensing Module catalog numbers 193-ESM-___-___-D180 Figure 15 - 100-D115…-D180 Starter Assembly Installation Supplied with Overload Relay M8 x 25 M8 Washer...
  • Page 37: Starter Dimensions

    Installation and Wiring Chapter 2 Starter Dimensions Approximate dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. Figure 16 - E300 Sensing Module 193-ESM-___-__-C23 with 100-C09…-C23 Contactor (3.40) (1.37) (1.76) n 5 (0.18) 190 (7.49)
  • Page 38 Chapter 2 Installation and Wiring Figure 18 - E300 Sensing Module 193-ESM-___-__-C55 with 100-C43…-C55 Contactor 45 (1.75) (4.21) (2.12) n 5 (0.18) 60 (2. 190 (7.49) (ADD 5 mm (0.19 in.) FOR CONTACTOR COIL ON LINE SIDE) 67 (2.65) 37 (1.48)
  • Page 39 (3.66) 42.6 (1.68) (1.54) 151.4 (4.13) (0.39) (5.96) 61.4 FROM (2.42) CONTACTOR MTG. HOLE Figure 21 - E300 Sensing Module 193-ESM-___-__-D180 with 100-D115…-D180 Contactor and Terminal Covers (6.10) (3.94) (4.72) 55.8 n 5.5 (2.20) (0.22) (0.32) n 11.5 (0.45) (5.71) 405.4...
  • Page 40 Chapter 2 Installation and Wiring Figure 22 - E300 Sensing Module 592-ESM-___-__-S2 with NEMA Contactor Size 0 and Size 1 (3.56) n 6 (0.22) 180 (7.06) 157 (6.17) 249 (9.78) 12 (0.46) (4.91) 35 (1.38) (2.75) Figure 23 - E300 Sensing Module 592-ESM-___-__-S2 with NEMA Contactor Size 2 (3.94)
  • Page 41 Installation and Wiring Chapter 2 Figure 24 - E300 Sensing Module 592-ESM-___-__-S3 with NEMA Contactor Size 3 138.2 (5.44) 11.35 161.6 (0.45) (6.36) 19.9 (0.78) 219.9 274.1 (8.66) (10.79) (14.49) 138.4 (4.76) (5.45) 139.85 (5.51) 155.45 (6.12) Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 42: Din Rail / Panel Mount Dimensions

    Chapter 2 Installation and Wiring Figure 25 - E300 Sensing Module 592-ESM-___-__-S4 with NEMA Contactor Size 4 11.4 (0.45) 189.9 (7.48) 25.2 (0.99) 312.7 (9.84) (12.31) (16.30) 130.1 (5.12) n 8.7 (0.34) 161.7 5 PLCS 160.2 (6.37) (6.31) 187.5 (7.38) DIN Rail / Panel Mount Approximate dimensions are shown in millimeters (inches).
  • Page 43 Installation and Wiring Chapter 2 Figure 27 - E300 Sensing Module 193-ESM-___-30A-E3T and 193-ESM-___-60A-E3T (1.18) (4.94) (1.764) 6 (0.24) 9 (0.33) 46 (1.81) 4 (0.16) 148 (5.83) 135 (5.32) 4 (0.14) 6 (0.217) 101 (3.96) 4 (0.154) n 5 (0.17) 8 (0.30)
  • Page 44 (0.22) 135.7 (5.34) (3.66) (0.86) FROM MTG. HOLE 151.4 63.9 FROM (5.96) MTG. HOLE (2.51) Figure 31 - E300 Sensing Module 193-ESM-___-200A-T with Terminal Covers 119.8 (4.72) (4.13) n 5.5 (0.22) (0.86) (3.66) FROM (8.32) MTG. HOLE 63.9 151.4 (2.51) (5.96)
  • Page 45: Pass-Thru Modules Dimensions

    Installation and Wiring Chapter 2 Pass-thru Modules Approximate dimensions are shown in millimeters. Dimensions are not intended to be used for manufacturing purposes. Dimensions Figure 32 - E300 Sensing Module 193-ESM-___-30A-P, 193-ESM-___-60A-P, and 193-ESM-VIG-30A-CT 11.35 (0.45) from mounting foot mounting hole to reset button 21.5...
  • Page 46: Expansion Bus Peripherals Dimensions

    (0.83) Expansion Bus Peripherals Approximate dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. Dimensions Figure 35 - E300 Digital Expansion Module 193-EXP-DIO-___ 22.5 (0.89) 2 x 4.5 (0.18) dia. 98 (3.86) 87 (3.43) 80.75 (3.18)
  • Page 47 Installation and Wiring Chapter 2 Figure 36 - E300 Expansion Analog Module 193-EXP-AIO 22.5 (0.89) 2 x 4.5 (0.18) dia. 98 (3.86) 87 (3.43) 80.75 (3.18) (4.73) Figure 37 - E300 Expansion Power Supply 193-EXP-PS-___ (1.77) 4x 4.5 (0.18) dia (4.73)
  • Page 48: Terminals

    (0.73) (3.94) 13.5 (0.53) (2.76) Terminals Sensing Module Table 2 - E300 Sensing Module Wire Size and Torque Specifications Wire Type Conductor Torque Cat. No. 193-ESM-_ _ _-30A-_ _ _ 193-ESM-_ _ _-100A-_ _ _ 193-ESM-_ _ _-60A-_ _ _...
  • Page 49 Installation and Wiring Chapter 2 Table 3 - E300 Sensing Module Wire 3-Pole Terminal Block Specifications 3-Pole Terminal Block Cat. No. Conductor Torque Cat. No. 193-ESM-_ _ _-200A-_ _ _ 100-DTB180 Single #6 AWG…250 MCM 90…110 lb.-in. 16…120 mm 10…12 N•m Multiple 6…1/0 AWG...
  • Page 50: Control Module

    Chapter 2 Installation and Wiring Control Module Figure 40 - E300 Control Module Terminal Designations 193-EIO-63- _ _ _ 193-EIOGP-42- _ _ _ 193-EIO-43- _ _ _ 193-EIOGP-22- _ _ _ Power / PTC Communication Terminals Module Latch Expansion Bus Connector...
  • Page 51 Installation and Wiring Chapter 2 Table 5 - E300 Control Module Wire Size and Torque Specifications Wire Type Conductor Torque Cat. No. 193-EIO-_ _-_ _ _ 193-EIOGP-_ _-_ _ _ Stranded/Solid [AWG] Single 24...12 AWG 4lb-in Multiple 24...16 AWG (stranded only)
  • Page 52: Expansion Digital Module

    Expansion Digital Module Figure 42 - E300 Expansion Digital Module Terminal Designations R04 R14 RC3 IN2 IN3 IN0 IN1 INC Table 6 - E300 Expansion Digital Module Wire Size and Torque Specifications Wire Type Conductor Torque Cat. No. 193-EXP-DIO-42-_ _ _...
  • Page 53: Expansion Analog Module

    Installation and Wiring Chapter 2 Figure 43 - E300 Expansion Digital Module Wiring Diagram R04 R14 RC3 Source IN1 IN2 Expansion Analog Module Figure 44 - E300 Expansion Analog Module Terminal Designations OUT+OUT- IN2+ IN2- RS2 IN1+ IN1- RS1 IN0+ IN0- RS0...
  • Page 54 Chapter 2 Installation and Wiring Table 7 - E300 Expansion Analog Module Wire Size and Torque Specifications Wire Type Conductor Torque Cat. No. 193-EXP-AIO-31 Stranded/Solid [AWG] Single 24...12 AWG 5 lb-in Multiple 24...16 AWG (stranded only) 5 lb-in Flexible-Stranded with Ferrule Metric Single 0.25…2.5 mm...
  • Page 55: Expansion Power Supply

    Installation and Wiring Chapter 2 Expansion Power Supply Figure 46 - E300 Expansion Power Supply Terminal Designations A1 A2 Table 8 - E300 Expansion Power Supply Wire Size and Torque Specifications Wire Type Conductor Torque Cat. No. 193-EXP-PS-_ _ Stranded/Solid [AWG] Single 24...12 AWG...
  • Page 56: Grounding

    Short-Circuit Ratings The E300 relay is suitable for use on circuits capable of delivering not more than the RMS symmetrical amperes listed in the following tables. Table 9 - Standard Fault Short Circuit Ratings per UL60947-4-1 and CSA 22.2 No. EN60947-4-1 Max.
  • Page 57 Installation and Wiring Chapter 2 Max. Starter FLC [A] Max. Available Fault Max. Voltage [V AC] Max. RKs non-time Max. Listed Circuit Sensing Module Cat. No. Contactor Cat. No. Current [A] Delay Fuse Size [A] Breaker Size [A] 592-ESM-___-30A-S2 500_-A_ 5000 500_-B_ 592-ESM-___-60A-S2...
  • Page 58 Chapter 2 Installation and Wiring Table 11 - High Fault Short Circuit Ratings Using Standalone Overload Relays When Protected by Fuses per UL60947-4-1 and CSA 22.2 No. EN60947-4-1 Sensing Module Cat. No. Max. Available Fault Max. Starter FLC [A] Max. Voltage [V] Class J or CC Fuse [A] Current [A] 193-ESM-___-30A-P...
  • Page 59 Installation and Wiring Chapter 2 Table 13 - Short Circuit Ratings per UL60947-4-1 and CSA 22.2 No. EN60947-4-1 with Bul. 100-C IEC contactors that are protected by Bul. 140U-D circuit breakers Overload Relay with Max. Available Fault Max. Circuit Breaker Contactor Cat.
  • Page 60 Chapter 2 Installation and Wiring Table 15 - High Fault Short Circuit Ratings using listed Circuit Breakers per UL60947-4-1 and CSA 22.2 No. EN60947-4-1 Max. Starter FLC [A] Max. Available Fault Max. Listed Circuit Min. Enclosure Sensing Module Cat. No. Contactor Cat.
  • Page 61: Fuse Coordination

    Typical Motor Connections ATTENTION: When working on energized circuits, DO NOT rely on voltage and current information that is provided by the E300 relay for personal safety. Always use a portable voltage or current measurement device to measure the signal locally.
  • Page 62: Three-Phase Direct On-Line (Dol) And  Single-Phase Full-Voltage

    6/T3 2/T1 4/T2 6/T3 External Line Current Current Transformer Ratio Transformer Application The following E300 relay sensing module catalog numbers can be used with step down current transformers: • 193-ESM-IG-30A-E3T • 193-ESM-IG-30A-T • 193-ESM-IG-30A-P • 193-ESM-I-30A-E3T • 193-ESM-I-30A-T • 193-ESM-I-30A-P •...
  • Page 63 E300 relay report inaccurate motor operational data and possible motor damage. The E300 relay trip on a configuration fault when the FLA setting is outside of IMPORTANT the legal range of the selected CT Ratio settings. The TRIP/WARN LED status indicator flashes red 3-long, 8-short blinking pattern.
  • Page 64 Current T1/2 T2/4 T3/6 T1/2 T2/4 T3/6 Transformers Transformers The E300 relay voltage-based sensing modules support a wide variety of power systems. Table 22 lists the power systems supported by the specific sensing module. Table 22 - Supported Power Systems...
  • Page 65 Installation and Wiring Chapter 2 Voltage Mode Voltage Mode (Parameter 252) determines the method for how voltage is monitored E300 relay. Select the connection type for the appropriate power system. See Appendix C for wiring diagrams when using step-down potential transformers with the 193-ESM-VIG-30A-CT sensing module.
  • Page 66: Control Circuits

    Chapter 2 Installation and Wiring Control Circuits ATTENTION: Do not exceed the ratings of the E300 relay’s output and trip relay. If the coil current or voltage of the contactor exceeds the overload relay’s ratings, an interposing relay must be used.
  • Page 67: Full-Voltage Reversing Starter (With Network Control)

    Installation and Wiring Chapter 2 Figure 51 - CENELEC Nomenclature Relay 1 R13 Relay 0 Configured as a Trip Relay Contact shown with supply voltage applied. Full-Voltage Reversing Starter (with Network Control) Figure 52 - NEMA Nomenclature Relay 0 Configured as a Relay 1 Trip Relay Relay 2...
  • Page 68 Chapter 2 Installation and Wiring Figure 53 - CENELEC Nomenclature Relay 0 Configured as a Trip Relay Relay 1 Relay 2 Contact shown with supply voltage applied. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 69: Diagnostic Station

    The E300™ Electronic Overload Relay supports a Diagnostic Station on the E300 Expansion Bus (requires Control Module firmware v3.000 and higher). The Diagnostic Station allows you to view any E300 relay parameter and edit any configuration parameter. This chapter explains the navigation keys on the Diagnostic Station, how to view a parameter, how to edit a configuration parameter, and the Diagnostic Station programmable display sequence.
  • Page 70: Parameter Group Navigation

    Chapter 3 Diagnostic Station Parameter Group Navigation To start the navigation menu, press the key. Use the keys to select the Groups navigation method and press Use the keys to select the parameter group to display and press Use the keys to view the parameters that are associated with that group.
  • Page 71: Linear List Navigation

    Diagnostic Station Chapter 3 If you do not press any navigation keys for a period that Display Timeout (Parameter 436) defines, the Diagnostic Station automatically returns to its programmable display sequence. Linear List Navigation To start the navigation menu, press the key.
  • Page 72: System Info

    The E300 Diagnostic Station can display firmware revision information, view the time and date of the E300 relay virtual clock, and edit the time and date of the E300 relay virtual clock. To view E300 relay system information, start the navigation menu by pressing key.
  • Page 73: Editing Parameters

    To start the navigation menu, press key. You are prompted to view parameters by groups, parameters in a linear list, or E300 relay system information. Choose the appropriate method and navigate to the parameter to be modified.
  • Page 74: Editing A Bit Enumerated Parameter

    Programmable Display Display Sequence Sequence The Diagnostic Station of the E300 relay sequentially displays up to seven screens every 5 seconds. • Three-phase current • Three-phase voltage • Total power •...
  • Page 75: Stopping The Display Sequence

    Diagnostic Station Chapter 3 The user-defined screens allow you to select up to two parameters per screen. Diagnostic Station User-defined Screens on page 114 to configure the Screen# and Parameter# (Parameters 428…435). If you do not press any navigation keys for a period that Display Timeout (Parameter 436) defines, the Diagnostic Station automatically cancels any editing modifications, restores the previous value, and returns to its programmable display sequence.
  • Page 76: Automatic Trip And Warning Screens

    Chapter 3 Diagnostic Station Automatic Trip and Warning When the E300 relay is in a trip or warning state, the E300 Diagnostic Station automatically displays the trip or warning event. Screens Press any of the navigation keys ( , or ) to return to the automatic display sequence.
  • Page 77: System Operation And Configuration

    2. Cycle power on the E300 relay After commissioning activities and maintenance tasks are completed, return the E300 relay back to Ready or Run Mode by setting the rotary dials of the E300 communication module back to its previous positions and then cycle power.
  • Page 78: Ready Mode

    System Operation and Configuration Ready Mode Ready Mode is a standby mode for the E300 relay in which the relay is ready to help protect an electric motor and no electrical current has been detected. You can modify configuration parameters, update firmware, and issue commands if the appropriate security policies are enabled.
  • Page 79: Test Mode

    E300 relay are operating properly with the motor starter without energizing power to the motor. If the E300 relay senses current or voltage in Test Mode, it generates a Test Mode Trip. Invalid Configuration Mode Invalid Configuration Mode is an active mode for the E300 relay in which the relay is in a tripped state due to invalid configuration data.
  • Page 80: Option Match

    Option Match Due to the modular nature of the E300 relay, you can enable the Option Match feature to ensure that the options that were expected for the motor protection application are the ones that are present on the E300 relay system. You can configure an option mismatch to cause a protection trip or provide a warning within the E300 relay.
  • Page 81: Enable Option Match Protection Trip (Parameter 186)

    System Operation and Configuration Chapter 4 Enable Option Match Protection Trip (Parameter 186) To enable the Option Match feature to cause a protection trip in the event of an option mismatch, place a (1) in bit position 8 of Parameter 186 (Control Trip Enable).
  • Page 82: Enable Option Match Protection Warning (Parameter 192)

    Operating Hours Warning Enable Reserved Control Module Type (Parameter 221) The E300 relay offers six different control modules. Place the value of the expected control module into Parameter 221. A value of (0) disables the Option Match feature for the control module.
  • Page 83: Sensing Module Type (Parameter 222)

    System Operation and Configuration Chapter 4 Sensing Module Type (Parameter 222) The E300 relay offers 12 different sensing modules. Place the value of the expected sensing module into Parameter 222. A value of (0) disables the Option Match feature for the sensing module.
  • Page 84: Operator Station Type (Parameter 224)

    System Operation and Configuration Operator Station Type (Parameter 224) The E300 relay offers two different types of operator stations. Place the value of the expected operator station into Parameter 224. A value of (0) disables the Option Match feature for the operator station. A value of (1), “No Operator Station”, makes the operator station not allowed on the Expansion Bus and...
  • Page 85: Digital I/O Expansion Module 2 Type (Parameter 226)

    Chapter 4 Digital I/O Expansion Module 2 Type (Parameter 226) The E300 relay supports up to four additional Digital I/O expansion modules. This parameter configures the Option Match feature for the Digital I/O expansion module set to Digital Module 2. There are three different types of Digital I/O expansion modules.
  • Page 86: Analog I/O Expansion Module 1 Type (Parameter 229)

    I/O Expansion Module”, makes the Analog I/O expansion module set to Analog Module 1 not allowed on the Expansion Bus and prevents you from connecting an Analog I/O expansion module set to Analog Module 1 to the E300 relay system.
  • Page 87: Analog I/O Expansion Module 2 Type (Parameter 230)

    I/O Expansion Module”, makes the Analog I/O expansion module set to Analog Module 2 not allowed on the Expansion Bus and prevents you from connecting an Analog I/O expansion module set to Analog Module 2 to the E300 relay system.
  • Page 88: Analog I/O Expansion Module 4 Type (Parameter 232)

    Analog Module 4 Mismatch Action Security Policy The E300 relay has a security policy that can be used to prevent anyone with malicious intent to potentially damage a motor or piece of equipment. By default, Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 89: Device Configuration Policy

    System Operation and Configuration Chapter 4 you can only modify the security policy when the E300 relay is in Administration Mode (see page 77 to learn how to enable Administration Mode). Table 45 - Security Policy (Parameter 211) Bit Function Detail...
  • Page 90: Firmware Update Policy

    Security Configuration Policy The Security Configuration Policy allows you to modify the Security Policy of the E300 relay in Ready Mode. When this policy is disabled, the Security Policy can only be modified when the E300 relay is in Administration Mode.
  • Page 91: Input Pt01 Assignment (Parameter 197)

    Normal Function as a digital input Trip Reset Reset the E300 relay when it is in a tripped state Remote Trip Force the E300 relay to go into a tripped state Use the value in FLA2 Setting (Parameter 177) for the current-based protection...
  • Page 92: Input Pt03 Assignment (Parameter 199)

    Normal Function as a digital input Trip Reset Reset the E300 relay when it is in a tripped state Remote Trip Force the E300 relay to go into a tripped state Use the value in FLA2 Setting (Parameter 177) for the current-based protection...
  • Page 93: Input Pt05 Assignment (Parameter 201)

    Normal Function as a digital input Trip Reset Reset the E300 relay when it is in a tripped state Remote Trip Force the E300 relay to go into a tripped state Use the value in FLA2 Setting (Parameter 177) for the current-based protection...
  • Page 94: Output Pt00 Assignment (Parameter 202)

    Description Normal Function as a relay output Function as a normally closed contact until the E300 relay is in a tripped state in which the relay opens. The Trip Trip Relay Relay remains open until a trip reset is issued.
  • Page 95: Output Pt01 Assignment (Parameter 203)

    Description Normal Function as a relay output Function as a normally closed contact until the E300 relay is in a tripped state in which the relay opens. The Trip Trip Relay Relay remains open until a trip reset is issued.
  • Page 96: Output Pt02 Assignment (Parameter 204)

    Description Normal Function as a relay output Function as a normally closed contact until the E300 relay is in a tripped state in which the relay opens. The Trip Trip Relay Relay remains open until a trip reset is issued.
  • Page 97: Output Relay Protection Fault Modes

    Output Communication Idle State Output Relay Protection Fault Modes When the E300 relay has a trip event, you can configure the E300 output relays to go to a specific state (Open or Closed) or ignore the trip event and continue to operate as normal.
  • Page 98 Chapter 4 System Operation and Configuration Table 59 - Output Relay 0 Protection Fault Value (Parameter 305) Value Assignment Description Open Open Output Relay 0 Closed Close Output Relay 0 Output Relay 1 Protection Fault Action (Parameter 310) Output Relay 1 Protection Fault Action (Parameter 310) defines how Output Relay 1 responds when a trip event occurs when this parameter is assigned as a Normal/General Purpose Relay.
  • Page 99 System Operation and Configuration Chapter 4 Digital Expansion Module 1 Output Relay Protection Fault Action (Parameter 322) Digital Expansion Module 1 Output Relay Protection Fault Action (Parameter 322) defines how both output relays on Digital Expansion Module 1 responds when a trip event occurs. Table 64 - Digital Expansion Module 1 Output Relay Protection Fault Action (Parameter 322) Value Assignment...
  • Page 100: Output Relay Communication Fault Modes

    Output Relay Communication Fault Modes When the E300 relay loses communication, experiences a communication bus fault, or has a duplicate node address, you can configure the E300 output relays with the Communication Fault Mode parameters to go to a specific state (Open or Closed) or hold the last state.
  • Page 101 System Operation and Configuration Chapter 4 that the E300 output relays can go to a temporary state (Open, Closed, or Hold Last State) when a communication fault occurs. Configure this temporary state by using the Communication Fault Mode parameters. If communication between the E300 relay and a network scanner or control...
  • Page 102 Close Output Relay 0 Output Relay 0 Final Fault Value (Parameter 562) Output Relay 0 Final Fault Value (Parameter 562) is available in E300 relay firmware v5.000 and higher. This parameter defines which state Output Relay 0 should go to when communication is not restored with the time defined in Fault Mode Output State Duration (Parameter 561).
  • Page 103 Close Output Relay 2 Output Relay 2 Final Fault Value (Parameter 564) Output Relay 2 Final Fault Value (Parameter 564) is available in E300 relay firmware v5.000 and higher. This parameter defines which state Output Relay 2 should go to when communication is not restored with the time defined in Fault Mode Output State Duration (Parameter 561).
  • Page 104 Digital Expansion Module 1 Output Relay Final Fault Value (Parameter 565) Digital Expansion Module 1 Output Relay Final Fault Value (Parameter 565) is available in E300 relay firmware v5.000 and higher. This parameter defines which state both output relays should go to when communication is not restored with the time defined in Fault Mode Output State Duration (Parameter 561).
  • Page 105 Digital Expansion Module 2 Output Relay Final Fault Value (Parameter 566) Digital Expansion Module 2 Output Relay Final Fault Value (Parameter 566) is available in E300 relay firmware v5.000 and higher. This parameter defines which state both output relays should go to when communication is not restored with the time defined in Fault Mode Output State Duration (Parameter 561).
  • Page 106: Output Relay Communication Idle Modes

    Digital Expansion Module 4 Output Relay Final Fault Value (Parameter 568) Digital Expansion Module 4 Output Relay Final Fault Value (Parameter 568) is available in E300 relay firmware v5.000 and higher. This parameter defines which state both output relays should go to when communication is not restored with the time defined in Fault Mode Output State Duration (Parameter 561).
  • Page 107 System Operation and Configuration Chapter 4 Output Relay 0 Communication Idle Action (Parameter 308) Output Relay 0 Communication Idle Action (Parameter 308) defines how Output Relay 0 when assigned as a Normal/General Purpose Relay or Control/ Control & Trip Relay responds when a network scanner goes into Idle Mode or a programmable logic controller (PLC) goes into Program Mode.
  • Page 108 Chapter 4 System Operation and Configuration Output Relay 2 Communication Idle Action (Parameter 320) Output Relay 2 Communication Idle Action (Parameter 320) defines how Output Relay 2 when assigned as a Normal/General Purpose Relay or Control/ Control & Trip Relay responds when a network scanner goes into Idle Mode or a PLC goes into Program Mode.
  • Page 109 System Operation and Configuration Chapter 4 Digital Expansion Module 2 Output Relay Communication Idle Action (Parameter 332) Digital Expansion Module 2 Output Relay Communication Idle Action (Parameter 332) defines how both output relays on Digital Expansion Module 2 responds when network scanner goes into Idle Mode or a PLC goes into Program Mode.
  • Page 110: Expansion Bus Fault

    Close Digital Expansion Module 4 Output Relay 0 and Output Relay 1 Expansion Bus Fault The expansion bus of the E300 relay can be used to expand the I/O capabilities of the device with the addition of digital and analog expansion I/O modules. The...
  • Page 111 Bus In and Bus Out ports of all expansion modules. When all of the expansion I/O modules’ status LEDs are solid green, reset the trip state of the E300 relay by pressing the blue reset button on the Communication Module, via network communication, with the internal web server of the EtherNet/IP communication module, or by an assigned digital input.
  • Page 112: Expansion Bus Warning

    Activating Emergency Start inhibits overload and blocked start protection. IMPORTANT Running in this mode can cause equipment overheating and fire. To enable the Emergency Start feature in the E300 relay, set the Emergency Start Enable (Parameter 216) to Enable. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 113 Normal Function as a digital input Trip Reset Reset the E300 relay when it is in a tripped state Remote Trip Force the E300 relay to go into a tripped state Use the value in FLA2 Setting (Parameter 177) for the current-based...
  • Page 114: Language

    PTC Sensing Ready Reserved Language The E300 relay with firmware v5.000 and higher supports multiple languages for its Diagnostic Station and web server. Parameter text is displayed in the selected language. Language (Parameter 212) Language (Parameter 212) displays the E300 relay parameter text is displayed in the selected language.
  • Page 115: User-Defined Screen 1

    User-defined Screen 1 User-defined Screen 1 – Parameter 1 User-defined Screen 1 - Parameter 1 (Parameter 428) is the E300 parameter number to display for the first parameter in user-defined screen 1. You can select one of the 560 available E300 relay parameters.
  • Page 116: User-Defined Screen 3

    System Operation and Configuration User-defined Screen 2 – Parameter 2 User-defined Screen 2 - Parameter 2 (Parameter 431) is the E300 parameter number to display for the second parameter in user-defined screen 2. You can select one of the 560 available E300 relay parameters.
  • Page 117: User-Defined Screen 4

    User-defined Screen 4 User-defined Screen 4 – Parameter 1 User-defined Screen 4 - Parameter 1 (Parameter 434) is the E300 parameter number to display for the first parameter in user-defined screen 4. You can select one of the 560 available E300 relay parameters.
  • Page 118: Analog I/O Expansion Modules

    Chapter 4 System Operation and Configuration Analog I/O Expansion The E300 relay supports up to four Analog I/O Expansion Modules on the E300 Expansion Bus. The E300 Analog Expansion Module has three independent Modules universal inputs and one analog output.
  • Page 119 System Operation and Configuration Chapter 4 Table 123 - Analog Input Data Format for Voltage Input Type Engineering Engineering Raw / Input Range Input Value Condition Units Units x 10 Proportional 10.50V DC High Limit 10500 1050 32767 17202 10.00V DC High Range 10000 1000...
  • Page 120: Analog Output Channel

    Chapter 4 System Operation and Configuration Engineering Engineering Raw / Input Range Input Value Condition Units Units x 10 Proportional 260.0 °C High Limit 2600 32767 16383 260.0 °C High Range 2600 32767 16383 -80.0 °C Low Range -800 -32768 -80.0 °C Low Limit -800...
  • Page 121 0.00V DC Low Limit 0.00% The analog output can be used to communicate E300 diagnostic information via an analog signal to distributed control systems, programmable logic controllers, or panel-mounted analog meters. The analog output can represent one of the following E300 diagnostic parameters: •...
  • Page 122: Update Rate

    Update Rate Analog Input Channels The performance for the input channels of the E300 Analog I/O Expansion Module is dependent on the filter setting for each channel. The total scan time for the input channels of the module is determined by adding the conversion time for all enabled input channels.
  • Page 123: Analog Module 1

    System Operation and Configuration Chapter 4 The E300 Analog I/O Expansion Module input channel scan time is 1242 ms (1024+153+65). Analog Output Channel The E300 Analog I/O Expansion Module output channel update rate is 10 ms. Analog Module 1 Analog Module 1 – Input Channel 00 Type Analog Module 1 –...
  • Page 124 Chapter 4 System Operation and Configuration Table 131 - Analog Module 1 – Input Channel 00 Format (Parameter 438) Value Assignment Description EngUnits Engineering Units (mA, V, °C, °F, or Ω) EngUnitsTimes10 Engineering Units x 10 (mA, V, °C, °F, or Ω) RawProportional Raw / Proportional (-32768…+32767) ScaledForPID...
  • Page 125 System Operation and Configuration Chapter 4 Table 135 - Analog Module 1 – Input Channel 00 RTD Type Enable (Parameter 442) Value Assignment Description 3-Wire Scan a 3-wire RTD sensor 2-Wire Scan a 2-wire RTD sensor Analog Module 1 – Input Channel 01 Type Analog Module 1 –...
  • Page 126 Chapter 4 System Operation and Configuration Analog Module 1 – Input Channel 01 Temperature Unit Analog Module 1 – Input Channel 01 Temperature Unit (Parameter 448) defines the temperate unit for RTD sensor readings. Table 138 - Analog Module 1 – Input Channel 01 Temperature Unit (Parameter 448) Value Assignment Description...
  • Page 127 System Operation and Configuration Chapter 4 Table 142 - Analog Module 1 – Input Channel 02 Type (Parameter 455) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 128 Chapter 4 System Operation and Configuration Analog Module 1 – Input Channel 02 Filter Frequency Analog Module 1 – Input Channel 02 Filter Frequency (Parameter 458) defines update rate for the input channels of the analog module. Table 145 - Analog Module 1 – Input Channel 02 Filter Frequency (Parameter 458) Value Assignment Description...
  • Page 129 Analog Module 1 – Output Channel 00 Expansion Bus Fault Action Analog Module 1 – Output Channel 00 Expansion Bus Fault Action (Parameter 466) defines the value that the E300 Analog I/O Expansion Module Output Channel 00 provides when there is an E300 Expansion Bus fault.
  • Page 130: Analog Module 2

    Chapter 4 System Operation and Configuration Analog Module 2 Analog Module 2 – Input Channel 00 Type Analog Module 2 – Input Channel 00 Type (Parameter 468) defines the type of analog signal that Input Channel 00 of Analog Module 2 monitors. Table 152 - Analog Module 2 –...
  • Page 131 System Operation and Configuration Chapter 4 Table 154 - Analog Module 2 – Input Channel 00 Temperature Unit (Parameter 470) Value Assignment Description DegreesC Report RTD Temperature Data in °C DegreesF Report RTD Temperature Data in °F Analog Module 2 – Input Channel 00 Filter Frequency Analog Module 2 –...
  • Page 132 Chapter 4 System Operation and Configuration Table 158 - Analog Module 2 – Input Channel 01 Type (Parameter 477) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 133 System Operation and Configuration Chapter 4 Analog Module 2 – Input Channel 01 Filter Frequency Analog Module 2 – Input Channel 01 Filter Frequency (Parameter 480) defines update rate for the input channels of the analog module. Table 161 - Analog Module 2 – Input Channel 01 Filter Frequency (Parameter 480) Value Assignment Description...
  • Page 134 Chapter 4 System Operation and Configuration Table 164 - Analog Module 2 – Input Channel 02 Type (Parameter 486) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 135 System Operation and Configuration Chapter 4 Analog Module 2 – Input Channel 02 Filter Frequency Analog Module 2 – Input Channel 02 Filter Frequency (Parameter 489) defines update rate for the input channels of the analog module. Table 167 - Analog Module 2 – Input Channel 02 Filter Frequency (Parameter 489) Value Assignment Description...
  • Page 136 Analog Module 2 – Output Channel 00 Expansion Bus Fault Action Analog Module 2 – Output Channel 00 Expansion Bus Fault Action (Parameter 497) defines the value that the E300 Analog I/O Expansion Module Output Channel 00 provides when there is an E300 Expansion Bus fault.
  • Page 137: Analog Module 3

    System Operation and Configuration Chapter 4 Analog Module 3 Analog Module 3 – Input Channel 00 Type Analog Module 3 – Input Channel 00 Type (Parameter 499) defines the type of analog signal that Input Channel 00 of Analog Module 3 monitors. Table 174 - Analog Module 3 –...
  • Page 138 Chapter 4 System Operation and Configuration Table 176 - Analog Module 3 – Input Channel 00 Temperature Unit (Parameter 501) Value Assignment Description DegreesC Report RTD Temperature Data in °C DegreesF Report RTD Temperature Data in °F Analog Module 3 – Input Channel 00 Filter Frequency Analog Module 3 –...
  • Page 139 System Operation and Configuration Chapter 4 Table 180 - Analog Module 3 – Input Channel 01 Type (Parameter 508) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 140 Chapter 4 System Operation and Configuration Analog Module 3 – Input Channel 01 Filter Frequency Analog Module 3 – Input Channel 01 Filter Frequency (Parameter 511) defines update rate for the input channels of the analog module. Table 183 - Analog Module 3 – Input Channel 01 Filter Frequency (Parameter 511) Value Assignment Description...
  • Page 141 System Operation and Configuration Chapter 4 Table 186 - Analog Module 3 – Input Channel 02 Type (Parameter 517) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 142 Chapter 4 System Operation and Configuration Analog Module 3 – Input Channel 02 Filter Frequency Analog Module 3 – Input Channel 02 Filter Frequency (Parameter 520) defines update rate for the input channels of the analog module. Table 189 - Analog Module 3 – Input Channel 02 Filter Frequency (Parameter 520) Value Assignment Description...
  • Page 143 Analog Module 3 – Output Channel 00 Expansion Bus Fault Action Analog Module 3 – Output Channel 00 Expansion Bus Fault Action (Parameter 528) defines the value that the E300 Analog I/O Expansion Module Output Channel 00 provides when there is an E300 Expansion Bus fault.
  • Page 144: Analog Module 4

    Chapter 4 System Operation and Configuration Analog Module 4 Analog Module 4 – Input Channel 00 Type Analog Module 4 – Input Channel 00 Type (Parameter 530) defines the type of analog signal that Input Channel 00 of Analog Module 4 monitors. Table 196 - Analog Module 4 –...
  • Page 145 System Operation and Configuration Chapter 4 Table 198 - Analog Module 4 – Input Channel 00 Temperature Unit (Parameter 532) Value Assignment Description DegreesC Report RTD Temperature Data in °C DegreesF Report RTD Temperature Data in °F Analog Module 4 – Input Channel 00 Filter Frequency Analog Module 4 –...
  • Page 146 Chapter 4 System Operation and Configuration Table 202 - Analog Module 4 – Input Channel 01 Type (Parameter 539) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 147 System Operation and Configuration Chapter 4 Analog Module 4 – Input Channel 01 Filter Frequency Analog Module 4 – Input Channel 01 Filter Frequency (Parameter 542) defines update rate for the input channels of the analog module. Table 205 - Analog Module 4 – Input Channel 00 Filter Frequency (Parameter 542) Value Assignment Description...
  • Page 148 Chapter 4 System Operation and Configuration Table 208 - Analog Module 4 – Input Channel 02 Type (Parameter 548) Value Assignment Description Disabled Disable the analog input 4To20mA Read an analog current signal from 4…20 mA 0To20mA Read an analog current signal from 0…20 mA 0To10Volts Read an analog voltage signal from 0…10 V DC 1To5Volts...
  • Page 149 System Operation and Configuration Chapter 4 Analog Module 4 – Input Channel 02 Filter Frequency Analog Module 4 – Input Channel 02 Filter Frequency (Parameter 551) defines update rate for the input channels of the analog module. Table 211 - Analog Module 4 – Input Channel 02 Filter Frequency (Parameter 551) Value Assignment Description...
  • Page 150 Analog Module 4 – Output Channel 00 Expansion Bus Fault Action Analog Module 4 – Output Channel 00 Expansion Bus Fault Action (Parameter 559) defines the value that the E300 Analog I/O Expansion Module Output Channel 00 provides when there is an E300 Expansion Bus fault.
  • Page 151: Network Start Configuration States

    Output State Duration feature, which can be used with redundant network scanners or control systems. The Fault Mode Output State Duration is the time that the E300 Network Start commands can go to a temporary state (Stop, Start, or Hold Last State) when a communication fault occurs. Configure this temporary state by using the Network Start Communication Fault Mode parameters.
  • Page 152 If communication between the E300 relay and a network scanner or control system is not restored within the Fault Mode Output State Duration time the E300 Network Start command goes to the final fault state, which is configured using the Network Start Final Fault Mode parameters.
  • Page 153: Network Start Communication Idle Modes

    Chapter 4 Network Start Final Fault Value (Parameter 573) Network Start Final Fault Value (Parameter 573) is available in E300 firmware v5.000 and higher. This parameter defines which state the Network Start command should go to when communication is not restored within the time defined in Fault Mode Output State Duration (Parameter 561).
  • Page 154 The default Operating Mode (Parameter 195) for the E300 relay is Overload (Network) in which the E300 relay operates like a traditional overload relay in which one of the output relays is assigned as a Trip Relay or Control Relay. You can use network commands to control any output relays that are assigned as Normal output relays or Control Relays.
  • Page 155: Operating Modes

    Overload Operating Modes The overload-based operating modes of the E300 relay make the E300 operate as a traditional overload relay, in which it interrupts the control circuit of a contactor coil with a normally closed trip relay or a normally open control relay.
  • Page 156 Assignments (Parameters 202…204) to Trip Relay or Control Relay. 3. Overload Trip must be enabled in TripEnableI (Parameter 183). Wiring Diagram The E300 relay is wired as a traditional overload relay with one of the output relays configured as a normally closed trip relay. Figure 55 is a wiring diagram of a non-reversing starter.
  • Page 157: Overload (Operator Station)

    The DeviceLogix program that is shown in Figure 57 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 2. Figure 57 - Overload (Network) DeviceLogix Program Timing Diagram...
  • Page 158 (Operator Station) operating mode is used when an automation controller uses the start and stop keys of the E300 Operator Station for its motor control logic. You can use network commands to control the control relay or any of the remaining output relays that are assigned as normal output relays.
  • Page 159 Relay 1 Trip Relay Contact shown with supply voltage applied. The E300 relay can also be wired as a control relay so that the relay that is controlled by the communication network opens when a trip event occurs. Figure 60 is a wiring diagram of a non-reversing starter with Relay 0 configured as a control relay.
  • Page 160: Overload (Local I/O)

    The Overload (Local I/O) operating mode is used for standalone applications or automation systems that do not use an E300 Operator Station. You can use the digital inputs of the E300 for the motor control logic of an automation controller. The automation controller can use network commands to control the control relay or any of the remaining output relays that are assigned as Normal output relays.
  • Page 161 Relay 1 Trip Relay Contact shown with supply voltage applied. The E300 relay can also be wired as a control relay so that the relay that is controlled by the communication network opens when a trip event occurs. Figure 64 is a wiring diagram of a non-reversing starter with Relay 0 configured as a control relay.
  • Page 162: Overload (Custom)

    The DeviceLogix program that is shown in Figure 65 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 35. Figure 65 - Overload (Local I/O) DeviceLogix Program...
  • Page 163 Relay 1 Trip Relay Contact shown with supply voltage applied. The E300 relay can also be wired as a control relay so that the relay that is controlled by the communication network opens when a trip event occurs. Figure 68 is a wiring diagram of a non-reversing starter with Relay 0 configured as a control relay.
  • Page 164: Non-Reversing Starter Operating Modes

    A normally open control Operating Modes relay controls the contactor coil. When a trip event occurs, the control relay remains open until the E300 receives a trip reset command. There are 15 non- reversing starter-based operating modes to choose from: • Network •...
  • Page 165: Non-Reversing Starter (Network)

    3. Overload Trip must be enabled in TripEnableI (Parameter 183). Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 166 The DeviceLogix program that is shown in Figure 71 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 3. Figure 71 - Non-reversing Starter (Network) DeviceLogix Program...
  • Page 167: Non-Reversing Starter (Network) With Feedback

    Input 0. If a feedback signal is not received before the time identified in Feedback Timeout (Parameter 213), then the E300 issues a trip or warning event. The reset button of the E300 Operator Station is enabled for this operating mode.
  • Page 168 Timeout Warning in WarningEnableC (Parameter 192) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 169 Operating Modes Chapter 5 Figure 74 - Non-reversing Starter (Network) with Feedback DeviceLogix Program Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 170: Non-Reversing Starter (Operator Station)

    Relay 0, which controls the contactor coil. These keys are momentary push buttons, so the non-reversing starter remains energized when you release the “I” button. The E300 issues a trip or warning event if the E300 Operator Station disconnects from the base relay.
  • Page 171 6. Communication Fault & Idle Override (Parameter 346) must be enabled. 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay, and it opens when a trip event occurs. Figure 76 is a wiring diagram of a non-reversing starter with Output Relay 0 configured as a control relay.
  • Page 172 Chapter 5 Operating Modes Figure 77 - Non-reversing Starter (Operator Station) DeviceLogix Program Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 173: Non-Reversing Starter (Operator Station) With Feedback

    Relay 0, which controls the contactor coil. These keys are momentary push buttons, so the non-reversing starter remains energized when you release the “I” button. The E300 issues a trip or warning event if the E300 Operator Station disconnects from the base relay.
  • Page 174 Timeout Warning in WarningEnableC (Parameter 192) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 175 The DeviceLogix program that is shown in Figure 80 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 28. Figure 80 - Non-reversing Starter (Operator Station) with Feedback DeviceLogix Program...
  • Page 176: Non-Reversing Starter (Local I/O) - Two-Wire Control

    The Non-reversing Starter (Local I/O) – Two-wire Control operating mode uses IMPORTANT the signal from Input 0 to control the starter. When an E300 powers up, the starter energizes if Input 0 is active. Rules 1. Available for Control Module firmware v5.000 and higher.
  • Page 177 5. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the state of Input 0 and opens when a trip event occurs.
  • Page 178: Two-Wire Control With Feedback

    The Non-reversing Starter (Local I/O) – Two-wire Control with Feedback IMPORTANT operating mode uses the state of Input 1 to control the starter. When the E300 powers up, the starter energizes if Input 1 is active. Rules 1. Available for Control Module firmware v5.000 and higher.
  • Page 179 6. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the state if Input 1 and opens when a trip event occurs.
  • Page 180 Chapter 5 Operating Modes Figure 86 - Non-reversing Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 181: Non-Reversing Starter (Local I/O) - Three-Wire Control

    Output Relay 0. Both Input 0 and Input 1 are momentary values, so the non-reversing starter only energizes if Input 0 is active and Input 1 is momentarily active. The reset button of the E300 Operator Station is enabled for this operating mode. Rules 1.
  • Page 182 Operating Modes Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is energized when Input 0 is active and Input 1 is momentarily active. Output Relay 0 de-energizes when Input 0 is momentarily de-active or when a trip event occurs.
  • Page 183: Three-Wire Control With Feedback

    Input 0. If a feedback signal is not received before the time identified in Feedback Timeout (Parameter 213), then the E300 issues a trip or warning event. The reset button of the E300 Operator Station is enabled for this operating mode.
  • Page 184 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the state if Input 1 and opens when a trip event occurs.
  • Page 185 Operating Modes Chapter 5 Figure 92 - Non-reversing Starter (Local I/O) – Three-wire Control with Feedback DeviceLogix Program Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 186: Non-Reversing Starter (Network & Operator Station)

    The E300 relay’s Operating Mode Non-Reversing Starter (Network& Operator Station) (Parameter 195 = 11) uses the network tag LogicDefinedPt00Data in Output Assembly 144 in Remote control mode and the E300 Operator Station’s “I” and “0” keys in Local control mode to control Relay 0, which controls the contactor coil.
  • Page 187 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 188 DeviceLogix Program The DeviceLogix program that is shown in Figure 95 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 11. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 189 Operating Modes Chapter 5 Figure 95 - Non-reversing Starter (Network & Operator Station) DeviceLogix Program Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 190: Non-Reversing Starter (Network & Operator Station)

    Station) with Feedback (Parameter 195 = 12) uses the network tag LogicDefinedPt00Data in Output Assembly 144 in Remote control mode and the E300 Operator Station’s “I” and “0” keys in Local control mode to control Relay 0, which controls the contactor coil. LogicDefinedPt00Data is a maintained value, so the non-reversing starter remains energized when LogicDefinedPt00Data has a value of 1 in Remote control mode.
  • Page 191 8. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 192 Chapter 5 Operating Modes Figure 97 - Non-reversing Starter (Network & Operator Station) with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 193: Two-Wire Control

    Program, Part B Non-reversing Starter (Network & Local I/O) – Two-wire Control The E300 relay’s Operating Mode Non-Reversing Starter (Network & Local I/O) – Two Wire Control (Parameter 195 = 16) uses the network tag LogicDefinedPt00Data in Output Assembly 144 in Remote control mode and Input 0 in Local control mode to control Relay 0, which controls the contactor coil.
  • Page 194 5. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 195: Non-Reversing Starter (Network & Local I/O)

    Non-reversing Starter (Network & Local I/O) with Feedback – Two-wire Control The E300 relay’s Operating Mode Non-Reversing Starter (Network & Local I/O) with Feedback – Two Wire Control (Parameter 195 = 17) uses the network tag LogicDefinedPt00Data in Output Assembly 144 in Remote control mode and Input 2 in Local control mode to control Relay 0, which controls the contactor coil.
  • Page 196 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 197 DeviceLogix Program The DeviceLogix program that is shown in Figure 103 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 17. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 198 Chapter 5 Operating Modes Figure 103 - Non-reversing Starter (Network & Local I/O) with Feedback – Two-wire Control DeviceLogix Program Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 199: Three-Wire Control

    Trip Reset Non-reversing Starter (Network & Local I/O) – Three-wire Control The E300 relay’s Operating Mode Non-Reversing Starter (Network& Operator Station) – Three Wire Control (Parameter 195 = 18) uses the network tag LogicDefinedPt00Data in Output Assembly 144 in Remote control mode and Input 1 &...
  • Page 200 6. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 201: Non-Reversing Starter (Network & Local I/O) With Feedback

    Non-reversing Starter (Network & Local I/O) with Feedback – Three- wire Control The E300 relay’s Operating Mode Non-Reversing Starter (Network& Operator Station) with Feedback – Three Wire Control (Parameter 195 = 19) uses the network tag LogicDefinedPt00Data in Output Assembly 144 in Remote control mode and Input 1 &...
  • Page 202 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay in which the relay is controlled by the communication network and opens when a trip event occurs.
  • Page 203 The DeviceLogix program that is shown in Figure 108 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 19. Figure 108 - Non-reversing Starter (Network & Local I/O) with Feedback – Three-wire Control...
  • Page 204: Non-Reversing Starter (Custom)

    3. Overload Trip must be enabled in TripEnableI (Parameter 183). Wiring Diagram The E300 relay can also be wired as a control relay so that the relay that is controlled by the communication network opens when a trip event occurs.
  • Page 205: Reversing Starter Operating Modes

    Two normally open control relays Modes control the forward and reverse contactor coils. When a trip event occurs, both control relays remain open until the E300 receives a trip reset command. There are 11 reversing starter-based operating modes to choose from: • Network •...
  • Page 206 4. Overload Trip must be enabled in TripEnableI (Parameter 183). Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the forward contactor and Output Relay 1 is wired as a control relay to the reversing contactor in which both relays are controlled by the communication network and open when a trip event occurs.
  • Page 207 Operating Modes Chapter 5 Figure 112 - Reversing Starter (Network) DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 208 Chapter 5 Operating Modes Figure 113 - Reversing Starter (Network) DeviceLogix Program, Part B Timing Diagram Figure 114 - Reversing Starter (Network) Timing Diagram Trip Event Forward Reverse FWD (Relay 0) REV (Relay 1) Trip Status Trip Reset Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 209: Reversing Starter (Network) With Feedback

    Timeout Warning in WarningEnableC (Parameter 192) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the forward contactor and Output Relay 1 is wired as a control relay to the reversing contactor in which both relays are controlled by the communication network and open when a trip event occurs.
  • Page 210 The DeviceLogix program that is shown in Figure 116, Figure 117, and Figure 118 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 6. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 211 Operating Modes Chapter 5 Figure 116 - Reversing Starter (Network) with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 212 Chapter 5 Operating Modes Figure 117 - Reversing Starter (Network) with Feedback DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 213 Operating Modes Chapter 5 Figure 118 - Reversing Starter (Network) with Feedback DeviceLogix Program, Part C Timing Diagram Figure 119 - Reversing Starter (Network) with Feedback Timing Diagram Trip Event Feedback Timeout FWD (Relay 0) REV (Relay 1) FWD Feedback (IN0) REV Feedback (IN1)
  • Page 214: Reversing Starter (Operator Station)

    Reversing Starter (Operator Station) The E300 relay’s Operating Mode Reversing Starter (Operating Station) (Parameter 195 = 29) uses the E300 Operator Station’s “I” key to control Output Relay 0, which controls the forward contactor coil. The “II” key controls Output Relay 1, which controls the reversing contactor coil.
  • Page 215 Chapter 5 Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the forward contactor, and Output Relay 1 is wired as a control relay to the reversing contactor. Both relays open when a trip event occurs.
  • Page 216 Chapter 5 Operating Modes Figure 121 - Reversing Starter (Operator Station) DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 217 Operating Modes Chapter 5 Figure 122 - Reversing Starter (Operator Station) DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 218 Chapter 5 Operating Modes Figure 123 - Reversing Starter (Operator Station) DeviceLogix Program, Part C Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 219: Reversing Starter (Operator Station) With Feedback

    Reversing Starter (Operator Station) with Feedback The E300 relay’s Operating Mode Reversing Starter (Operator Station) with Feedback (Parameter 195 = 30) uses the E300 Operator Station’s “I” and “0” keys to control Relay 0, which controls the contactor coil. These keys are momentary push buttons, so the reversing starter remains energized when you release the “I”...
  • Page 220 Timeout Warning in WarningEnableC (Parameter 192) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the forward contactor and Output Relay 1 is wired as a control relay to the reversing contactor.
  • Page 221 The DeviceLogix program that is shown in Figure 127 through Figure 130 automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 30. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 222 Chapter 5 Operating Modes Figure 127 - Reversing Starter (Operator Station) with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 223 Operating Modes Chapter 5 Figure 128 - Reversing Starter (Operator Station) with Feedback DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 224 Chapter 5 Operating Modes Figure 129 - Reversing Starter (Operator Station) with Feedback DeviceLogix Program, Part C Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 225 Operating Modes Chapter 5 Figure 130 - Reversing Starter (Operator Station) with Feedback DeviceLogix Program, Part D Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 226: Reversing Starter (Local I/O) - Two-Wire Control

    InterlockDelay (Parameter 215) defines the minimum time delay when switching direction. The reset button of the E300 Operator Station is enabled for this operating mode. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 227 The Reversing Starter (Local I/O) – Two-wire Control operating mode uses the IMPORTANT signal from Input 0 or Input 1 to control the starter. When an E300 powers up, the starter energizes if either Input 0 or Input 1 is active.
  • Page 228 Chapter 5 Operating Modes Figure 133 - Reversing Starter (Local I/O) – Two-wire Control DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 229 Operating Modes Chapter 5 Figure 134 - Reversing Starter (Local I/O) – Two-wire Control DeviceLogix Program, Part B Timing Diagram Figure 135 - Reversing Starter (Local I/O) – Two-wire Control Timing Diagram Trip Event Forward Reverse FWD (Relay 0) REV (Relay 1) Trip Status Trip Reset Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 230: Reversing Starter (Local I/O) - Two-Wire Control

    The Reversing Starter (Local I/O) – Two-wire Control operating mode uses the IMPORTANT signal from Input 0 or Input 1 to control the starter. When an E300 powers up, the starter energizes if either Input 0 or Input 1 is active.
  • Page 231 The DeviceLogix program that is shown in Figure 137, Figure 138, and Figure 139 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 41. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 232 Chapter 5 Operating Modes Figure 137 - Reversing Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 233 Operating Modes Chapter 5 Figure 138 - Reversing Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 234 Chapter 5 Operating Modes Figure 139 - Reversing Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program, Part C Timing Diagram Figure 140 - Reversing Starter (Operator Station) with Feedback Timing Diagram Trip Event Feedback Timeout Forward Stop Reverse FWD (Relay 0) REV (Relay 1) FWD Feedback...
  • Page 235: Reversing Starter (Local I/O) - Three-Wire Control

    Input 2 must be momentarily de-active before changing to another direction. InterlockDelay (Parameter 215) defines the minimum time delay when switching direction. The reset button of the E300 Operator Station is enabled for this operating mode. Rules 1. Available for Control Module firmware v5.000 and higher.
  • Page 236 The DeviceLogix program that is shown in Figure 142, Figure 143, and Figure 144 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 42. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 237 Operating Modes Chapter 5 Figure 142 - Reversing Starter (Local I/O) – Three-wire Control DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 238 Chapter 5 Operating Modes Figure 143 - Reversing Starter (Local I/O) – Three-wire Control DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 239: Reversing Starter (Network & Operator Station)

    Trip Status Trip Reset Reversing Starter (Network & Operator Station) The E300 relay’s Operating Mode Reversing Starter (Network& Operator Station) (Parameter 195 = 13) in Remote control mode uses network tags LogicDefinedPt00Data in Output Assembly 144 to control Relay 0, which controls the forward contactor coil, and LogicDefinedPt01Data in Output Assembly 144 to control Relay 1, which controls the reversing contactor coil.
  • Page 240 Network Communication Idle parameters (Parameters 569 – 573) described Chapter In Local control mode, the E300 Operator Station’s “I” key is used to control Output Relay 0, which controls the forward contactor coil. The “II” key controls Output Relay 1, which controls the reversing contactor coil. The “0” key is used to de-energize Output Relay 0 and Output Relay 1.
  • Page 241 8. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 and Output Relay 1 are wired as a control relays in which the relay is controlled by the communication network or E300 Operator Station, and both output relays open when a trip event occurs.
  • Page 242 Chapter 5 Operating Modes Figure 147 - Reversing Starter (Network & Operator Station) DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 243 Operating Modes Chapter 5 Figure 148 - Reversing Starter (Network & Operator Station) DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 244 Chapter 5 Operating Modes Figure 149 - Reversing Starter (Network & Operator Station) DeviceLogix Program, Part C Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 245: Reversing Starter (Network & Local I/O) - Two-Wire Control

    Figure 150 - Reversing Starter (Network & Operator Station) DeviceLogix Program, Part D Reversing Starter (Network & Local I/O) – Two-wire Control The E300 relay’s Operating Mode Reversing Starter (Network& Operator Station) (Parameter 195 = 20) in Remote control mode uses network tags...
  • Page 246 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 and Output Relay 1 are wired as a control relays in which the relay is controlled by the communication network or Input 0 &...
  • Page 247 The DeviceLogix program that is shown in Figure 152 Figure 153 automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 20. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 248 Chapter 5 Operating Modes Figure 152 - Reversing Starter (Network & Local I/O) – Two-wire Control DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 249 Operating Modes Chapter 5 Figure 153 - Reversing Starter (Network & Local I/O) – Two-wire Control DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 250: Reversing Starter (Network & Local I/O) - Three-Wire Control

    Trip Reset Reversing Starter (Network & Local I/O) – Three-wire Control The E300 relay’s Operating Mode Reversing Starter (Network& Operator Station) (Parameter 195 = 21) in Remote control mode uses network tags LogicDefinedPt00Data in Output Assembly 144 to control Relay 0, which controls the forward contactor coil, and LogicDefinedPt01Data in Output Assembly 144 to control Relay 1, which controls the reversing contactor coil.
  • Page 251 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 and Output Relay 1 are wired as a control relays in which the relay is controlled by the communication network or Input 0, Input 1, and Input 2.
  • Page 252 The DeviceLogix program that is shown in Figure 156, Figure 157, and Figure 158 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 21. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 253 Operating Modes Chapter 5 Figure 156 - Reversing Starter (Network & Local I/O) – Three-wire Control DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 254 Chapter 5 Operating Modes Figure 157 - Reversing Starter (Network & Local I/O) – Three-wire Control DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 255: Reversing Starter (Custom)

    Part C Reversing Starter (Custom) The E300 relay’s Operating Mode Reversing Starter (Custom) (Parameter 195 = 51) operates as a reversing starter with two output relays that are assigned as normally open control relays. The Reversing Starter (Custom) operating mode is used for applications that want customized DeviceLogix programs.
  • Page 256: Two-Speed Starter Operating Modes

    Relay 1 Run Reverse DeviceLogix Program The last saved DeviceLogix program is executed in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 50. Timing Diagram Figure 160 - Reversing Starter (Custom) Timing Diagram...
  • Page 257: Two-Speed Starter (Network)

    Idle parameters (Parameters 569 – 573) described in Chapter InterlockDelay (Parameter 215) defines the minimum time delay when switching direction. The reset button of the E300 Operator Station is enabled for this operating mode. The Two-speed Starter (Network) operating mode uses the value in network IMPORTANT tag LogicDefinedPt00Data or LogicDefinedPt01Data to control the starter.
  • Page 258 Operating Modes Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the high-speed contactor and Output Relay 1 is wired as a control relay to the low-speed contactor. In this configuration, both relays are controlled by the communication network and open when a trip event occurs.
  • Page 259 Operating Modes Chapter 5 Figure 162 - Two-speed Starter (Network) DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 260 Chapter 5 Operating Modes Figure 163 - Two-speed Starter (Network) DeviceLogix Program, Part B Timing Diagram Figure 164 - Two-speed Starter (Network) Timing Diagram Trip Event Run Fast Run Slow Fast (Relay 0) Slow (Relay 1) Trip Status Trip Reset Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 261: Two-Speed Starter (Network) With Feedback

    Timeout Warning in WarningEnableC (Parameter 192) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the high-speed contactor and Output Relay 1 is wired as a control relay to the low-speed contactor.
  • Page 262 The DeviceLogix program that is shown in Figure 166, Figure 167, and Figure 168 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 10. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 263 Operating Modes Chapter 5 Figure 166 - Two-speed Starter (Network) with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 264 Chapter 5 Operating Modes Figure 167 - Two-speed Starter (Network) with Feedback DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 265 Operating Modes Chapter 5 Figure 168 - Two-speed Starter (Network) with Feedback DeviceLogix Program, Part C Timing Diagram Figure 169 - Two-speed Starter (Network) with Feedback Timing Diagram Trip Event Feedback Timeout Run Fast Run Slow Fast (Relay 0) Slow (Relay 1) Fast Feedback Slow Feedback Trip Status...
  • Page 266: Two-Speed Starter (Operator Station)

    Two-speed Starter (Operator Station) The E300 relay’s Operating Mode Two Speed Starter (Operating Station) (Parameter 195 = 33) uses the E300 Operator Station’s “I” key to control Output Relay 0, which controls the high-speed contactor coil. The “II” key controls Output Relay 1, which controls the low-speed contactor coil.
  • Page 267 Chapter 5 Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the high-speed contactor, and Output Relay 1 is wired as a control relay to the low-speed contactor. Both relays open when a trip event occurs.
  • Page 268 Chapter 5 Operating Modes Figure 171 - Two-speed Starter (Operator Station) DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 269 Operating Modes Chapter 5 Figure 172 - Two-speed Starter (Operator Station) DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 270 Chapter 5 Operating Modes Figure 173 - Two-speed Starter (Operator Station) DeviceLogix Program, Part C Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 271: Two-Speed Starter (Operator Station) With Feedback

    Two-speed Starter (Operator Station) with Feedback The E300 relay’s Operating Mode Two Speed Starter (Operator Station) with Feedback (Parameter 195 = 34) uses the E300 Operator Station’s “I” and “0” keys to control Relay 0, which controls the contactor coil. These keys are momentary push buttons, so the two-speed starter remains energized when you release the “I”...
  • Page 272 Timeout Warning in WarningEnableC (Parameter 192) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 is wired as a control relay to the high-speed contactor and Output Relay 1 is wired as a control relay to the low-speed contactor.
  • Page 273 The DeviceLogix program that is shown in Figure 176 through Figure 179 automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 34. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 274 Chapter 5 Operating Modes Figure 176 - Two-speed Starter (Operator Station) with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 275 Operating Modes Chapter 5 Figure 177 - Two-speed Starter (Operator Station) with Feedback DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 276 Chapter 5 Operating Modes Figure 178 - Two-speed Starter (Operator Station) with Feedback DeviceLogix Program, Part C Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 277 Operating Modes Chapter 5 Figure 179 - Two-speed Starter (Operator Station) with Feedback DeviceLogix Program, Part D Timing Diagram Figure 180 - Two-speed Starter (Operator Station) with Feedback Timing Diagram Feedback Trip Event Timeout Run Fast Stop Run Slow Fast (Relay 0) Slow (Relay 1) Fast Feedback Slow Feedback...
  • Page 278: Two-Speed Starter (Local I/O) - Two-Wire Control

    The Two-speed Starter (Local I/O) – Two-wire Control operating mode uses the IMPORTANT signal from Input 0 or Input 1 to control the starter. When an E300 powers up, the starter energizes if either Input 0 or Input 1 is active.
  • Page 279: Two-Speed Starter (Local I/O

    The DeviceLogix program that is shown in Figure 182 Figure 183 automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 46. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 280: Two-Speed Starter (Local I/O

    Chapter 5 Operating Modes Figure 182 - Two-speed Starter (Local I/O) – Two-wire Control DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 281: Two-Speed Starter (Local I/O

    Operating Modes Chapter 5 Figure 183 - Two-speed Starter (Local I/O) – Two-wire Control DeviceLogix Program, Part B Timing Diagram Figure 184 - Two-speed Starter (Local I/O) – Two-wire Control Timing Diagram Trip Event Run Fast Run Slow Fast (Relay 0) Slow (Relay 1) Trip Status Trip Reset...
  • Page 282: Two-Speed Starter (Local I/O) - Two-Wire Control With Feedback

    The Two-speed Starter (Local I/O) – Two-wire Control operating mode uses the IMPORTANT signal from Input 0 or Input 1 to control the starter. When an E300 powers up, the starter energizes if either Input 0 or Input 1 is active.
  • Page 283 The DeviceLogix program that is shown in Figure 186, Figure 187, and Figure 188 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 47. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 284 Chapter 5 Operating Modes Figure 186 - Two-speed Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 285 Operating Modes Chapter 5 Figure 187 - Two-speed Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 286 Chapter 5 Operating Modes Figure 188 - Two-speed Starter (Local I/O) – Two-wire Control with Feedback DeviceLogix Program, Part C Timing Diagram Figure 189 - Two-speed Starter (Local I/O) – Two-wire Control with Feedback Timing Diagram Trip Event Feedback Timeout Run Fast Run Slow Fast (Relay 0)
  • Page 287: Two-Speed Starter (Local I/O) - Three-Wire Control

    Chapter 5 Two-speed Starter (Local I/O) – Three-wire Control The E300 relay’s Operating Mode Two Speed Starter (Local I/O) – Three Wire Control (Parameter 195 = 48) uses a normally open momentary push button in Input 0 to energize Output Relay 0, which controls the high-speed contactor coil.
  • Page 288 192, and Figure 193is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 48. Figure 191 - Two-speed Starter (Local I/O) – Three-wire Control DeviceLogix Program, Part A...
  • Page 289 Operating Modes Chapter 5 Figure 192 - Two-speed Starter (Local I/O) – Three-wire Control DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 290: Two-Speed Starter (Network & Operator Station)

    Trip Reset Two-speed Starter (Network & Operator Station) The E300 relay’s Operating Mode Two Speed Starter (Network& Operator Station) (Parameter 195 = 15) in Remote control mode uses network tags LogicDefinedPt00Data in Output Assembly 144 to control Relay 0, which...
  • Page 291 Network Communication Idle parameters (Parameters 569 – 573) described Chapter In Local control mode, the E300 Operator Station’s “I” key is used to control Output Relay 0, which controls the high-speed contactor coil. The “II” key controls Output Relay 1, which controls the low-speed contactor coil. The “0”...
  • Page 292 8. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 and Output Relay 1 are wired as a control relays in which the relay is controlled by the communication network or E300 Operator Station, and both output relays open when a trip event occurs.
  • Page 293 Operating Modes Chapter 5 Figure 196 - Two-speed Starter (Network & Operator Station) DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 294 Chapter 5 Operating Modes Figure 197 - Two-speed Starter (Network & Operator Station) DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 295 Operating Modes Chapter 5 Figure 198 - Two-speed Starter (Network & Operator Station) DeviceLogix Program, Part C Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 296: Two-Speed Starter (Network & Local I/O) - Two-Wire Control

    Figure 199 - Two-speed Starter (Network & Operator Station) DeviceLogix Program, Part D Two-speed Starter (Network & Local I/O) – Two-wire Control The E300 relay’s Operating Mode Two Speed Starter (Network& Operator Station) (Parameter 195 = 24) in Remote control mode uses network tags...
  • Page 297 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 and Output Relay 1 are wired as a control relays in which the relay is controlled by the communication network or Input 0 &...
  • Page 298 The DeviceLogix program that is shown in Figure 201 Figure 202 automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 24. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 299 Operating Modes Chapter 5 Figure 201 - Two-speed Starter (Network & Local I/O) – Two-wire Control DeviceLogix Program, Part A Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 300 Chapter 5 Operating Modes Figure 202 - Two-speed Starter (Network & Local I/O) – Two-wire Control DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 301: Three-Wire Control

    Trip Reset Two-speed Starter (Network & Local I/O) – Three-wire Control The E300 relay’s Operating Mode Two Speed Starter (Network& Operator Station) (Parameter 195 = 25) in Remote control mode uses network tags LogicDefinedPt00Data in Output Assembly 144 to control Relay 0, which controls the high-speed contactor coil, and LogicDefinedPt01Data in Output Assembly 144 to control Relay 1, which controls the low-speed contactor coil.
  • Page 302 7. Network Fault Override (Parameter 347) must be enabled. Wiring Diagram The E300 relay’s Output Relay 0 and Output Relay 1 are wired as a control relays in which the relay is controlled by the communication network or Input 0, Input 1, and Input 2.
  • Page 303 206, and Figure 207 is automatically loaded and enabled in the E300 on power-up or when Operating Mode (Parameter 195) is set to a value of 25. Figure 205 - Two-speed Starter (Network & Local I/O) – Three-wire Control DeviceLogix Program,...
  • Page 304 Chapter 5 Operating Modes Figure 206 - Two-speed Starter (Network & Local I/O) – Three-wire Control DeviceLogix Program, Part B Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 305 Part C Two-Speed Starter (Custom) The E300 relay’s Operating Mode Two Speed Starter (Custom) (Parameter 195 = 53) operates as a two-speed starter with two output relays that are assigned as normally open control relays. The Two-speed Starter (Custom) operating mode is used for applications that want customized DeviceLogix programs.
  • Page 306: Monitor Operating Mode

    Monitor Operating Mode The E300 relay’s monitor-based operating mode allows you to disable all protection features of the E300 relay. You can use the E300 relay as a monitoring device to report current, voltage, power, and energy information. There is one monitor based operating mode – Custom.
  • Page 307: Monitor (Custom)

    Monitor (Custom) The E300 relay’s Operating Mode Monitor (Custom) (Parameter 195 = 54) allows you to use the E300 relay as a monitoring device. No configuration rules apply in this operating mode if all motor protection features are disabled. Rules 1.
  • Page 308 Chapter 5 Operating Modes Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 309: Protective Trip And Warning Functions

    • Voltage-based • Power-based • Control-based • Analog-based This chapter explains the trip and warning protection features of the E300 relay and the associated configuration parameters. Current-based Protection The E300 relay digitally monitors the electrical current that is consumed by an electric motor.
  • Page 310 Chapter 6 Protective Trip and Warning Functions Current Trip Enable (Parameter 183) and Current Warning Enable (Parameter 189) are used to enable the respective current-based protective trip and warning functions. Table 223 - Current Trip Enable (Parameter 183) 15 14 13 12 11 10 Function X Overload Trip Phase Loss Trip...
  • Page 311 Protective Trip and Warning Functions Chapter 6 Current Trip Status (Parameter 4) and Current Warning Status (Parameter 10) are used to monitor the respective current-based protective trip and warning functions. Table 225 - Current Trip Status (Parameter 4) 15 14 13 12 11 10 Function X Overload Trip Phase Loss Trip...
  • Page 312: Overload Protection

    • Current is present • % Thermal Capacity Utilized reaches 100% If the E300 relay trips on an overload, the following occurs: • The TRIP/WARN LED flashes a red short-1 blink pattern, • Bit 0 in Current Trip Status (Parameter 4) sets to 1 •...
  • Page 313 Protective Trip and Warning Functions Chapter 6 Full Load Amps Setting FLA (Parameter 171) is one of two parameters that affect the E300 relay’s thermal capacity utilization algorithm. Enter the motor’s full-load current rating into this parameter. Table 227 - FLA (Parameter 171) FLA (Parameter 171) 0.50 (0.5…30 A Sensing Modules)
  • Page 314 1.73. Trip Class Trip Class is the second of two parameters that affect the E300 relay’s thermal capacity utilization algorithm. Trip class is defined as the maximum time (in seconds) for an overload trip to occur when the motor’s operating current is six times its rated current.
  • Page 315 Overload Reset Mode (Parameter 173) allows you to select the reset mode for the E300 relay after an overload or thermistor (PTC) trip. If an overload trip occurs and automatic reset mode is selected, the E300 relay automatically resets when the value stored in % Thermal Capacity Utilized (Parameter 1) falls below the value stored in Overload Reset Level (Parameter 174).
  • Page 316 Chapter 6 Protective Trip and Warning Functions selected, the E300 Overload Relay can be manually reset after the % Thermal Capacity Utilized is less than the OL Reset Level. Table 231 - Overload Reset Mode (Parameter 173) Overload Reset Mode (Parameter 173)
  • Page 317 (Parameter 174) must be set as low as possible or in accordance with the motor thermal time constant. Overload Warning The E300 relay indicates an overload warning if: • No warning currently exists • Overload warning is enabled • Current is present •...
  • Page 318 Seconds Time To Reset After an overload trip, the E300 relay reports the time remaining until the device can be reset through Overload Time to Reset (Parameter 3). When the % Thermal Capacity Utilized value falls to or below the Overload Reset Level (Parameter 174), the Overload Time to Reset value indicates zero until the overload trip is reset.
  • Page 319: Phase Loss Protection

    Seconds Nonvolatile Thermal Memory The E300 relay includes a nonvolatile circuit to provide thermal memory. The time constant of the circuit corresponds to a Trip Class 20 setting. During normal operation, the thermal memory circuit is continuously monitored and updated to accurately reflect the thermal capacity utilization of the connected motor.
  • Page 320 The phase loss inhibit timer starts after the maximum phase of load current IMPORTANT transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for a phase loss condition until the Phase Loss Inhibit Time expires. Phase Loss Trip The E300 relay trips with a phase loss indication if: •...
  • Page 321: Ground Fault Current Protection

    The E300 relay provides core-balanced ground fault current detection capability, with the option of enabling Ground Fault Trip, Ground Fault Warning, or both.
  • Page 322 Chapter 6 Protective Trip and Warning Functions ATTENTION: The E300 relay is not a ground fault circuit interrupt or for personal protection as defined in Article 100 of the NEC. ATTENTION: The E300 relay is not intended to signal a disconnecting means to open the faulted current.
  • Page 323 BOOL Size (Bytes) Scaling Factor Units Ground Fault Filter An E300 relay can filter ground fault currents for High Resistance Grounded (HRG) systems from its current-based protection trip and warning functions, which include: • Thermal overload • Current imbalance • Jam •...
  • Page 324       Ground Fault Trip The E300 relay trips with a ground fault indication if: • No trip currently exists • Ground fault protection is enabled • Ground fault current is present • Ground Fault Inhibit Time has expired •...
  • Page 325 Protective Trip and Warning Functions Chapter 6 • Bit 0 of Device Status 0 (Parameter 20) sets to 1 • Any relay outputs configured as a Trip Relay open • Any relay outputs configured as a Control Relay open • Any relay outputs configured as a Trip Alarm close •...
  • Page 326 50% of the minimum ground fault current rating of the device. The E300 relay does not begin monitoring for a ground fault condition until the Ground Fault Current Inhibit Time expires.
  • Page 327: Stall Protection

    Ground Fault Warning Level Ground Fault Warning Level (Parameter 246) allows you to define the ground fault current at which the E300 relay indicates a warning and is adjustable from 0.20…5.00 A. Table 246 - Ground Fault Warning Level (Parameter 246)
  • Page 328 Trip function and stop the motor before damage and loss of production can occur. Stall Trip The E300 relay trips with a Stall Trip indication when: • No trip currently exists • Stall protection is enabled • Current is present •...
  • Page 329 Protective Trip and Warning Functions Chapter 6 Stall Enabled Time Stall Enabled Time (Parameter 249) allows you to adjust the time the E300 relay monitors for a stall condition during the motor starting sequence and is adjustable from 0…250 s.
  • Page 330: Jam Protection

    Stall Enabled Time elapses, the E300 relay disables Stall Protection until the next motor starting sequence. The E300 relay considers a motor to have begun its starting sequence if the IMPORTANT maximum phase of motor current transitions from 0A to approximately 30% of the minimum FLA setting of the device.
  • Page 331 Protective Trip and Warning Functions Chapter 6 Jam Trip The E300 relay trips with a jam indication if: • No trip currently exists • Jam Trip is enabled • Jam Inhibit Time has expired • The maximum phase current is greater than the Jam Trip Level for a time period greater than the Jam Trip Delay.
  • Page 332 Jam Trip Level Jam Trip Level (Parameter 253) allows you to define the current at which the E300 relay trips on a jam. It is user-adjustable from 50…600% of the FLA Setting (Parameter 171). Table 252 - Jam Trip Level (Parameter 253)
  • Page 333: Underload Protection

    Jam Warn Level Jam Warn Level (Parameter 254) allows you to define the current at which the E300 relay indicates a warning. It is user-adjustable from 50…600% for the FLA Setting (Parameter 171). Table 253 - Jam Warning Level (Parameter 254)
  • Page 334 Chapter 6 Protective Trip and Warning Functions Underload Trip The E300 relay trips with an underload indication if: • No trip currently exists • Underload Trip is enabled • Current is present • Underload Inhibit Time has expired • Minimum phase current is less than the Underload Trip Level for a time period greater than the Underload Trip Delay.
  • Page 335 Underload Trip Level Underload Trip Level (Parameter 257) allows you to define the current at which the E300 relay trips on an underload. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171). Table 256 - Underload Trip Level (Parameter 257)
  • Page 336: Current Imbalance Protection

    Underload Warning Level Underload Warning Level (Parameter 258) allows you to define the current at which the E300 relay indicates a warning. It is user-adjustable from 10…100% for the FLA Setting (Parameter 171). Table 257 - Underload Warning Level (Parameter 258)
  • Page 337 Size (Bytes) Scaling Factor Units Seconds Current Imbalance Trip The E300 relay trips with a current imbalance indication if: • No trip currently exists • Current Imbalance Trip is enabled • Current is present • Current Imbalance Inhibit Time has expired •...
  • Page 338 Seconds Current Imbalance Trip Level Current Imbalance Trip Level (Parameter 261) allows you to define the percentage at which the E300 relay trips on a current imbalance. It is user- adjustable from 10…100%. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 339 • Any relay outputs configured as a Warning Alarm closes Current Imbalance Warning Level Current Imbalance Warning Level (Parameter 262) allows you to define the percentage at which the E300 relay indicates a warning. It is user-adjustable from 10…100%. Table 261 - Current Imbalance Warning Level (Parameter 262)
  • Page 340: Line Undercurrent Protection

    The E300 relay can monitor for an undercurrent condition per phase with its Line Under Current Trip and Warning function to detect for a rapid under current in a specific phase to minimize damage and loss of production.
  • Page 341 L1 Under Current Trip Level L1 Under Current Trip Level (Parameter 267) allows you to define the current at which the E300 relay trips on a L1 Under Current. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171).
  • Page 342 L1 Under Current Warning Level L1 Under Current Warning Level (Parameter 268) allows you to define the current at which the E300 relay indicates a L1 Under Current warning. It is user- adjustable from 10…100% for the FLA Setting (Parameter 171).
  • Page 343 Once the Under Current Inhibit Timer has expired, the L1 Under Current Warning indication is instantaneous. L2 Under Current Trip The E300 relay trips with a L2 Under Current indication if: • No trip currently exists • L2 Under Current Trip is enabled •...
  • Page 344 L2 Under Current Trip Level L2 Under Current Trip Level (Parameter 270) allows you to define the current at which the E300 relay trips on a L2 Under Current. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171).
  • Page 345 L2 Under Current Warning Level L2 Under Current Warning Level (Parameter 271) allows you to define the current at which the E300 relay indicates a L2 Under Current warning. It is user- adjustable from 10…100% for the FLA Setting (Parameter 171).
  • Page 346 Once the Under Current Inhibit Timer has expired, the L2 Under Current Warning indication is instantaneous. L3 Under Current Trip The E300 relay trips with a L3 Under Current indication if: • No trip currently exists • L3 Under Current Trip is enabled •...
  • Page 347 L3 Under Current Trip Level L3 Under Current Trip Level (Parameter 273) allows you to define the current at which the E300 relay trips on a L3 Under Current. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171).
  • Page 348 L3 Under Current Warning Level L3 Under Current Warning Level (Parameter 274) allows you to define the current at which the E300 relay indicates a L3 Under Current warning. It is user- adjustable from 10…100% for the FLA Setting (Parameter 171).
  • Page 349: Line Overcurrent Protection

    Such conditions could harm the power system over time, which could lead to loss of production. The E300 relay can monitor for an overcurrent condition per phase with its Line Over Current Trip and Warning function to detect for a rapid over current in a specific phase to minimize damage and loss of production.
  • Page 350 • L1 Percent FLA (Parameter 47) is greater than the L1 Over Current Trip Level for a time period greater than the L1 Over Current Trip Delay. If the E300 relay trips on a L1 Over Current, the: • TRIP/WARN LED status indicator flashes a red 11-short blink pattern •...
  • Page 351 L1 Over Current Trip Level L1 Over Current Trip Level (Parameter 277) allows you to define the current at which the E300 relay trips on a L1 Over Current. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171).
  • Page 352 L1 Over Current Warning Level L1 Over Current Warning Level (Parameter 278) allows you to define the current at which the E300 relay indicates a L1 Over Current warning. It is user-adjustable from 10…100% for the FLA Setting (Parameter 171).
  • Page 353 L2 Over Current Trip Level L2 Over Current Trip Level (Parameter 280) allows you to define the current at which the E300 relay trips on a L2 Over Current. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171)
  • Page 354 L2 Over Current Warning Level L2 Over Current Warning Level (Parameter 281) allows you to define the current at which the E300 relay indicates a L2 Over Current warning. It is user-adjustable from 10…100% for the FLA Setting (Parameter 171).
  • Page 355 Once the Over Current Inhibit Timer has expired, the L2 Over Current Warning indication is instantaneous. L3 Over Current Trip The E300 relay trips with a L3 Over Current indication if: • No trip currently exists • L3 Over Current Trip is enabled •...
  • Page 356 L3 Over Current Trip Level L3 Over Current Trip Level (Parameter 283) allows you to define the current at which the E300 relay trips on a L3 Over Current. It is user-adjustable from 10…100% of the FLA Setting (Parameter 171).
  • Page 357: Line Loss Protection

    The E300 relay can monitor for a current-based line loss per phase with its Line Loss Trip and Warning function to detect for a rapid line loss in a specific phase to minimize damage and loss of production.
  • Page 358 Units Seconds L1 Line Loss Trip The E300 relay trips with a L1 Line Loss indication if: • No trip currently exists • L1 Over Current Trip is enabled • L1 Line Loss is activated via the appropriately programmed digital input (see Input Assignments, Parameters 196…201, in...
  • Page 359 The Line Loss Inhibit Timer starts when L1, L2, or L3 Line Loss protection is IMPORTANT activated by a programmed digital input (see Input Assignment Parameters 196-201). The E300 relay does not begin monitoring for Line Loss condition until the Line Loss Inhibit Timer expires. L1 Line Loss Warning The E300 relay indicates an L1 Line Loss warning if: •...
  • Page 360 Line Loss Inhibit Timer has expired, the L1 Line Loss Warning indication is instantaneous. L2 Line Loss Trip The E300 relay trips with a L2 Line Loss indication if: • No trip currently exists • L2 Over Current Trip is enabled •...
  • Page 361 The Line Loss Inhibit Timer starts when L1, L2, or L3 Line Loss protection is IMPORTANT activated by a programmed digital input (see Input Assignment Parameters 196-201). The E300 relay does not begin monitoring for Line Loss condition until the Line Loss Inhibit Timer expires. L2 Line Loss Warning The E300 relay indicates an L2 Line Loss warning if: •...
  • Page 362 Line Loss Inhibit Timer has expired, the L2 Line Loss Warning indication is instantaneous. L3 Line Loss Trip The E300 relay trips with a L3 Line Loss indication if: • No trip currently exists • L3 Over Current Trip is enabled •...
  • Page 363 The Line Loss Inhibit Timer starts when L1, L2, or L3 Line Loss protection is IMPORTANT activated by a programmed digital input (see Input Assignment Parameters 196-201). The E300 relay does not begin monitoring for Line Loss condition until the Line Loss Inhibit Timer expires. L3 Line Loss Warning The E300 relay indicates an L3 Line Loss warning if: •...
  • Page 364: Voltage-Based Protection

    Voltage-based Protection The E300 relay can digitally monitor the voltage supplied to an electric motor to help protect against poor voltage quality. You can prevent a contactor from energizing if the voltage is either too high, too low, or wrong rotation. The following E300 Sensing Modules provide voltage monitoring capabilities.
  • Page 365 Protective Trip and Warning Functions Chapter 6 Table 287 - Voltage Trip Enabled (Parameter 184) 15 14 13 12 11 10 Function X Under Voltage Trip Over Voltage Trip Voltage Imbalance Trip Phase Rotation Mismatch Trip Under Frequency Trip Over Frequency Trip Reserved Reserved Reserved...
  • Page 366 Chapter 6 Protective Trip and Warning Functions Table 289 - Voltage Trip Status (Parameter 5) 15 14 13 12 11 10 Function X Under Voltage Trip Over Voltage Trip Voltage Imbalance Trip Phase Rotation Mismatch Trip Under Frequency Trip Over Frequency Trip Reserved Reserved Reserved...
  • Page 367: Undervoltage Protection

    This can damage to an electric motor over an extended period of time. The E300 relay can monitor for this condition with its Under Voltage Trip and Warning function to detect for low voltage levels to minimize motor damage and loss of production.
  • Page 368 Seconds Under Voltage Trip Level Under Voltage Trip Level (Parameter 357) allows you to define the voltage at which the E300 relay trips on an under voltage. It is user-adjustable from 0…6553.5 volts. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 369 Volts The Under Voltage Inhibit Time starts after a phase voltage transitions from 0V IMPORTANT to 20V L-L. The E300 relay does not begin monitoring for an under voltage condition until the Under Voltage Inhibit Time expires. Under Voltage Warning The E300 relay indicates an Under Voltage warning if: •...
  • Page 370: Overvoltage Protection

    This can damage to an electric motor over an extended period of time. The E300 relay can monitor for this condition with its Over Voltage Trip and Warning function to detect for high voltage levels to minimize motor damage and loss of production.
  • Page 371 Seconds Over Voltage Trip Level Over Voltage Trip Level (Parameter 357) allows you to define the voltage at which the E300 relay trips on an over voltage. It is user-adjustable from 0…6553.5 volts. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 372 Volts The Over Voltage Inhibit Time starts after a phase voltage transitions from 0V IMPORTANT to 20V L-L. The E300 relay does not begin monitoring for an over voltage condition until the Over Voltage Inhibit Time expires. Over Voltage Warning The E300 relay indicates an Over Voltage warning if: •...
  • Page 373: Voltage Imbalance Protection

    When a voltage imbalance exists, the motor can experience an additional temperature rise, resulting in degradation of the motor insulation and reduction of life expectancy. The E300 relay can monitor for this condition with its Voltage Imbalance Trip and Warning function to detect for a rapid voltage imbalance fault to minimize damage and loss of production.
  • Page 374 • The Voltage Imbalance (Parameter 61) is greater than the Voltage Imbalance Trip Level for a time period greater than the Voltage Imbalance Trip Delay. If the E300 relay trips on a voltage imbalance, the: • TRIP/WARN LED status indicator flashes a red 1-long / 3-short blink pattern •...
  • Page 375 Units The Voltage Imbalance Inhibit Timer starts after a phase voltage transitions IMPORTANT from 0V to 20V L-L. The E300 relay does not begin monitoring for a voltage imbalance condition until the Voltage Imbalance Inhibit Time expires. Voltage Imbalance Warning The E300 relay indicates a voltage imbalance warning if: •...
  • Page 376: Phase Rotation Protection

    Protective Trip and Warning Functions Voltage Imbalance Warning Level Voltage Imbalance Warning Level (Parameter 368) allows you to define the percentage at which the E300 relay indicates a warning. It is user-adjustable from 10…100%. Table 301 - Voltage Imbalance Warning Level (Parameter 368)
  • Page 377 Phase Rotation Trip Type Phase Rotation Trip Type (Parameter 364) allows you to define the required voltage phase rotation for the motor application. E300 relay trips on a phase rotation mismatch when this parameter does not match the measured voltage phase rotation.
  • Page 378: Frequency Protection

    Units The Phase Rotation Inhibit Time starts after a phase voltage transitions from IMPORTANT 0V to 20V L-L. The E300 relay does not begin monitoring for a phase rotation mismatch condition until the Phase Rotation Inhibit Time expires. Frequency Protection The E300 relay has the capability to help protect against poor voltage quality by offering frequency-based protection.
  • Page 379 Size (Bytes) Scaling Factor Units Seconds Under Frequency Trip The E300 relay trips with an Under Frequency indication if: • No trip currently exists • Under Frequency Trip is enabled • Voltage is present • Under Frequency Inhibit Time has expired •...
  • Page 380 Seconds Under Frequency Trip Level Under Voltage Trip Level (Parameter 371) allows you to define the frequency at which the E300 relay trips on an under frequency. It is user-adjustable from 46…65 Hz. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 381 Units The Under Frequency Inhibit Time starts after a phase voltage transitions from IMPORTANT 0V to 20V L-L. The E300 relay does not begin monitoring for an under frequency condition until the Under Frequency Inhibit Time expires. Under Frequency Warning The E300 relay indicates an Under Frequency warning if: •...
  • Page 382 Chapter 6 Protective Trip and Warning Functions Over Frequency Trip The E300 relay trips with an Over Frequency indication if: • No trip currently exists • Over Frequency Trip is enabled • Voltage is present • Over Frequency Inhibit Time has expired •...
  • Page 383 Units The Over Frequency Inhibit Time starts after a phase voltage transitions from IMPORTANT 0V to 20V L-L. The E300 relay does not begin monitoring for an over frequency condition until the Over Frequency Inhibit Time expires. Over Frequency Warning The E300 relay indicates an Over Frequency warning if: •...
  • Page 384: Power-Based Protection

    Power-based Protection The E300 relay can digitally monitor the power that is supplied to an electric motor to help protect against poor power quality or alert you when power consumed by the motor differs from what is expected. This protection is useful for pump cavitation and pump material change detection.
  • Page 385 Protective Trip and Warning Functions Chapter 6 Power Trip Enable (Parameter 185) and Power Warning Enable (Parameter 191) are used to enable the respective power-based protective trip and warning functions. Table 313 - Power Trip Enable (Parameter 185) 15 14 13 12 11 10 Function X Under kW Trip Over kW Trip...
  • Page 386: Real Power (Kw) Protection

    Reserved Real Power (kW) Protection The E300 relay has the capability to help protect against real power (kW) for specific applications that require the monitoring of both voltage and current. You can help protect or issue a warning if the real power (kW) consumption of an electric motor is either too high or too low.
  • Page 387 • The total real power (kW) is less than the Under kW Trip Level for a time period greater than the Under kW Trip Delay. If the E300 relay trips on an under real power (kW), the: • TRIP/WARN LED status indicator flashes a red 2-long / 1-short blink pattern •...
  • Page 388 Under kW Trip Level Under kW Trip Level (Parameter 380) allows you to define the real power (kW) at which the E300 relay trips on an under real power (kW). It is user-adjustable from 0…2,000,000 kW. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 389 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an under real power (kW) condition until the Under kW Inhibit Time expires.
  • Page 390 • The total real power (kW) is greater than the Over kW Trip Level for a time period greater than the Over kW Trip Delay. If the E300 relay trips on an over real power (kW), the: • TRIP/WARN LED status indicator flashes a red 2-long / 2-short blink pattern •...
  • Page 391 Over kW Trip Level Over kW Trip Level (Parameter 384) allows you to define the total real power (kW) at which the E300 relay trips on over real power (kW). It is user-adjustable from 0…2,000,000 kW. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 392 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an over real power (kW) condition until the Over kW Inhibit Time expires.
  • Page 393: Reactive Power (Kvar) Protection

    Reactive Power (kVAR) Protection The E300 relay has the capability to help protect against reactive power (kVAR) for specific applications that require the monitoring of both voltage and current. You can help protect or issue a warning if the reactive power (kVAR) of an electric motor is either too high or too low.
  • Page 394 Consumed Trip Level for a time period greater than the Under kVAR Consumed Trip Delay. If the E300 relay trips on an under reactive power (kVAR) consumed, the: • TRIP/WARN LED status indicator flashes a red 2-long / 3-short blink pattern •...
  • Page 395 Protective Trip and Warning Functions Chapter 6 • Bit 0 in Device Status 0 (Parameter 20) sets to 1 • Any relay outputs configured as a Trip Relay open • Any relay outputs configured as a Control Relay open • Any relay outputs configured as a Trip Alarm close •...
  • Page 396 Under kVAR Consumed Trip Level Under kVAR Consumed Trip Level (Parameter 388) allows you to define the reactive power (kVAR) consumed at which the E300 relay trips on an under reactive power (kVAR) consumed. It is user-adjustable from 0…2,000,000 kW.
  • Page 397 Consumed Trip Level for a time period greater than the Over kVAR Consumed Trip Delay. If the E300 relay trips on an over reactive power (kVAR) consumed, the: • TRIP/WARN LED status indicator flashes a red 2-long / 4-short blink pattern •...
  • Page 398 Over kVAR Consumed Trip Level Over kVAR Consumed Trip Level (Parameter 392) allows you to define the total reactive power (kVAR) consumed at which the E300 relay trips on over reactive power (kVAR) consumed. It is user-adjustable from 0…2,000,000 kW.
  • Page 399 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an over reactive power (kVAR) consumed condition until the Over kVAR Consumed Inhibit Time expires.
  • Page 400 • kVAR Generated Trip Level for a time period greater than the Under kVAR Generated Trip Delay. If the E300 relay trips on an under reactive power (kVAR) generated, the: • TRIP/WARN LED status indicator flashes a red 2-long / 5-short blink pattern •...
  • Page 401 Under kVAR Generated Trip Level Under kVAR Generated Trip Level (Parameter 396) allows you to define the reactive power (kVAR) generated at which the E300 relay trips on an under reactive power (kVAR) generated. It is user-adjustable from 0…2,000,000 kW.
  • Page 402 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an under reactive power (kVAR) generated condition until the Under kVAR Generated Inhibit Time expires.
  • Page 403 • kVAR Generated Trip Level for a time period greater than the Over kVAR Generated Trip Delay. If the E300 relay trips on an over reactive power (kVAR) generated, the: • TRIP/WARN LED status indicator flashes a red 2-long / 6-short blink pattern •...
  • Page 404 Over kVAR Generated Trip Level Over kVAR Generated Trip Level (Parameter 400) allows you to define the total reactive power (kVAR) generated at which the E300 relay trips on over reactive power (kVAR) generated. It is user-adjustable from 0…2,000,000 kW.
  • Page 405 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an over reactive power (kVAR) generated condition until the Over kVAR Generated Inhibit Time expires.
  • Page 406: Apparent Power (Kva) Protection

    Generated Warning indication is instantaneous. Apparent Power (kVA) Protection The E300 relay has the capability to help protect against apparent power (kVA) for specific applications that require the monitoring of both voltage and current. You can help protect or issue a warning if the apparent power (kVA) consumption of an electric motor is either too high or too low.
  • Page 407 • The total apparent power (kVA) is less than the Under kVA Trip Level for a time period greater than the Under kVA Trip Delay. If the E300 relay trips on an under apparent power (kVA), the: • TRIP/WARN LED status indicator flashes a red 2-long / 7-short blink pattern •...
  • Page 408 Under kVA Trip Level Under kVA Trip Level (Parameter 404) allows you to define the apparent power (kVA) at which the E300 relay trips on an under apparent power (kVA). It is user- adjustable from 0…2,000,000 kVA. Table 344 - Under kVA Trip Level (Parameter 404) Default Value 0.000...
  • Page 409 Under kVA Warn Level Under kVA Warn Level (Parameter 405) allows you to define the apparent power (kVA) at which the E300 relay indicates a warning. It is user-adjustable from 0…2,000,000 kVA. Table 345 - Under kVA Warn Level (Parameter 405) Default Value 0.000...
  • Page 410 Over kVA Trip Level Over kVA Trip Level (Parameter 408) allows you to define the total apparent power (kVA) at which the E300 relay trips on over apparent power (kVA). It is user-adjustable from 0…2,000,000 kVA. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 411 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an over apparent power (kVA) condition until the Over kVA Inhibit Time expires.
  • Page 412: Power Factor Protection

    Power Factor Protection The E300 relay has the capability to help protect against power factor for specific applications that require the monitoring of both voltage and current. You can help protect or issue a warning if the power factor of an electric motor is either too high or too low.
  • Page 413 Scaling Factor Units Seconds Under Power Factor Lagging Trip The E300 relay trips with an Under Power Factor Lagging indication if: • No trip currently exists • Under Power Factor Lagging Trip is enabled • Current is present • Voltage is present •...
  • Page 414 Chapter 6 Protective Trip and Warning Functions • Bit 0 in Device Status 0 (Parameter 20) sets to 1 • Any relay outputs configured as a Trip Relay open • Any relay outputs configured as a Control Relay open • Any relay outputs configured as a Trip Alarm close •...
  • Page 415 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an under power factor lagging condition until the Under Power Factor Lagging Inhibit Time expires.
  • Page 416 Once the Under Power Factor Lagging Inhibit Time has expired, the Under Power Factor Lagging Warning indication is instantaneous. Over Power Factor Lagging Trip The E300 relay trips with an Over Power Factor Lagging indication if: • No trip currently exists • Over Power Factor Lagging Trip is enabled •...
  • Page 417 Over Power Factor Lagging Trip Level Over Power Factor Lagging Trip Level (Parameter 416) allows you to define the total power factor lagging at which the E300 relay trips on over power factor lagging. It is user-adjustable from 0…2,000,000 kW.
  • Page 418 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an over power factor lagging condition until the Over Power Factor Lagging Inhibit Time expires.
  • Page 419 Once the Over Power Factor Lagging Inhibit Time has expired, the Over Power Factor Lagging Warning indication is instantaneous. Under Power Factor Leading Trip The E300 relay trips with an Under Power Factor Leading indication if: • No trip currently exists • Under Power Factor Leading Trip is enabled •...
  • Page 420 Under Power Factor Leading Trip Level Under Power Factor Leading Trip Level (Parameter 420) allows you to define the power factor leading at which the E300 relay trips on an under power factor leading. It is user-adjustable from 0…2,000,000 kW.
  • Page 421 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an under power factor leading condition until the Under Power Factor Leading Inhibit Time expires.
  • Page 422 Once the Under Power Factor Leading Inhibit Time has expired, the Under Power Factor Leading Warning indication is instantaneous. Over Power Factor Leading Trip The E300 relay trips with an Over Power Factor Leading indication if: • No trip currently exists • Over Power Factor Leading Trip is enabled •...
  • Page 423 Over Power Factor Leading Trip Level Over Power Factor Leading Trip Level (Parameter 424) allows you to define the total power factor leading at which the E300 relay trips on over power factor leading. It is user-adjustable from 0…2,000,000 kW.
  • Page 424 0V to 20V L-L and a phase of load current transitions from 0 A to 30% of the minimum FLA setting of the device. The E300 relay does not begin monitoring for an over power factor leading condition until the Over Power Factor Leading Inhibit Time expires.
  • Page 425: Control-Based Protection

    Once the Over Power Factor Leading Inhibit Time has expired, the Over Power Factor Leading Warning indication is instantaneous. Control-Based Protection The E300 relay provides a number of control-based protection functions including: • Test Trip • Operator Station Trip •...
  • Page 426 Chapter 6 Protective Trip and Warning Functions Control Trip Status (Parameter 7) and Control Warning Status (Parameter 13) are used to monitor the respective current-based protective trip and warning functions. Table 366 - Control Warning Enable (Parameter 192) 15 14 13 12 11 10 Function Reserved Reserved...
  • Page 427: Test Trip

    Reserved Test Trip The E300 relay provides the capability to put the overload relay into a Test Trip state. You can implement this feature when commissioning a motor control circuit to verify the response of the E300 relay, its associated Expansion I/O modules, and the networked automation system.
  • Page 428: Thermistor (Ptc) Protection

    • Output Digital Module 4 Protection Fault Value (Parameter 342) Thermistor (PTC) Protection The following E300 relay control modules can accept up to 6 thermistors (PTC) temperature sensors wired in series to monitor the temperature of a motor’s windings, rotor, and/or bearings.
  • Page 429: Devicelogix Protection

    • Bit 1 in Device Status 0 (Parameter 20) sets to 1 • Any relay outputs configured as a Warning Alarm closes DeviceLogix Protection An E300 relay with firmware v5.000 or higher has a DeviceLogix logic engine. You can create custom logic programs for distributed motor control applications. Chapter 9 for more information on DeviceLogix.
  • Page 430 • No trip currently exists • The DeviceLogix program activates the DeviceLogix Trip bit If the E300 relay trips on a DeviceLogix program, the following occurs: • The TRIP/WARN LED flashes a red 3-long / 3-short blink pattern • Bit 2 in Control Trip Status (Parameter 7) sets to 1 •...
  • Page 431: Operator Station Trip

    • Any relay outputs configured as a Warning Alarm closes Operator Station Trip The E300 relay provides the capability to plug and play its optional operator stations. The operator station protection feature trips the E300 relay when you press the red O (stop) button. This feature is a failsafe mechanism to allow you to de-energize a contactor coil anytime the red O (stop) button is pressed.
  • Page 432: Remote Trip

    • Output Digital Module 4 Protection Fault Value (Parameter 342) Remote Trip The E300 relay provides the capability to remotely cause the E300 relay to trip via a network command or assigned digital input on the Control Module (see Chapter 4 for digital input assignments).
  • Page 433: Start Inhibit Protection

    A start is defined as the E300 relay sensing a transition in current from 0 A to 30% of the minimum FLA rating of the device. The Blocked Start protective function is set by Starts Per Hour (Parameter 205) and/or Starts Interval (Parameter 206).
  • Page 434 Chapter 6 Protective Trip and Warning Functions • Any relay outputs configured as a Trip Alarm close • Any relay outputs configured as a Normal Relay are placed in their Protection Fault state (if so programmed) The Protection Fault State of Relay 0, Relay 1, Relay 2, Digital Module 1 Output IMPORTANT Relays, Digital Module 2 Output Relays, Digital Module 3 Output Relays, and Digital Module 4 Output Relays are defined by the respective parameters:...
  • Page 435: Preventive Maintenance

    Seconds Preventive Maintenance The E300 relay offers preventive maintenance warnings based on the number of start cycles and the number of operating hours. These warnings can be used to alert you that the number of starts or number of operating hours has been reached, and it is time to perform preventive maintenance.
  • Page 436 • The value in Starts Counter (Parameter 29) is greater than the value set in Total Starts (Parameter 207) If the E300 relay warns on a number of starts warning, the following occurs: • The TRIP/WARN LED flashes a yellow 3-long / 12-short blink pattern •...
  • Page 437: Hardware Fault

    • The value in Operating Time (Parameter 28) is greater than the value set in Total Operating Hours (Parameter 208) If the E300 relay warns on an operating hours warning, the following occurs: • The TRIP/WARN LED flashes a yellow 3-long / 13-short blink pattern •...
  • Page 438: Configuration Trip

    • An issue exists between the Control Module, Sensing Module, and/or Communication Module If the E300 relay trips on a hardware fault trip, the following occurs: • The TRIP/WARN LED flashes a red 3-long / 7-short blink pattern • Bit 6 in Control Trip Status (Parameter 7) sets to 1 •...
  • Page 439: Option Match

    Operating Modes. You can select one of the pre-programmed Operating Modes that monitor the feedback status of a contactor by wiring the auxiliary contacts of the contactor into one of the digital inputs of the E300 relay. Chapter 5 for more information on Operating Modes.
  • Page 440: Expansion Bus Fault

    Trip and Warning. Nonvolatile Storage Fault The E300 relay continuously monitors the status of its nonvolatile storage. The E300 relay issues a nonvolatile storage fault trip if there is an issue with its Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 441: Test Mode Trip

    • Nonvolatile Storage Fault Trip is enabled • An issue exists in the E300 relay’s nonvolatile storage If the E300 relay trips on a nonvolatile storage fault trip, the following occurs: • The TRIP/WARN LED flashes a red 3-long / 14-short blink pattern •...
  • Page 442 Test Mode Trip state if motor control center enclosure is in a test position, and the E300 relay detects motor current and/or voltage is present. The E300 relay trips with a test mode trip indication if: •...
  • Page 443: Analog-Based Protection

    Chapter 6 Analog-based Protection The E300 relay’s Analog I/O Expansion Modules scan up to three analog signals per module. This information can be used to trigger an over analog level Trip or Warning. The analog-based protection features can be used with the following analog applications: •...
  • Page 444: Analog Module 1

    Analog Module 1 – Channel 00 Over Level Trip The E300 relay trips with an Analog Module 1 – Channel 00 Over Level Trip indication if: • No trip currently exists •...
  • Page 445 Channel 00 Trip Level for a time period greater than the Analog Module 1 – Channel 00 Over Level Trip Delay. If the E300 relay trips on an Analog Module 1 – Channel 00 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 1-short blink pattern •...
  • Page 446 Analog Module 1 – Channel 00 Trip Level (Parameter 444) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 1 – Channel 00 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 447 Channel 01 Trip Level for a time period greater than the Analog Module 1 – Channel 01 Over Level Trip Delay. If the E300 relay trips on an Analog Module 1 – Channel 01 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 2-short blink pattern •...
  • Page 448 Analog Module 1 – Channel 01 Trip Level (Parameter 453) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 1 – Channel 01 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 449 Analog Module 1 – Channel 01 Warning Level (Parameter 454) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 1 – Channel 01 Over Level warning. It is user-adjustable from - 32768…+32767.
  • Page 450 Channel 02 Trip Level for a time period greater than the Analog Module 1 – Channel 02 Over Level Trip Delay. If the E300 relay trips on an Analog Module 1 – Channel 02 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 3-short blink pattern •...
  • Page 451 Analog Module 1 – Channel 02 Trip Level (Parameter 462) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 1 – Channel 02 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 452: Analog Module 2

    Channel 00 Trip Level for a time period greater than the Analog Module 2 – Channel 00 Over Level Trip Delay. If the E300 relay trips on an Analog Module 2 – Channel 00 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 4-short blink pattern •...
  • Page 453 Analog Module 2 – Channel 00 Trip Level (Parameter 475) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 2 – Channel 00 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 454 Analog Module 2 – Channel 00 Warning Level (Parameter 476) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 2 – Channel 00 Over Level warning. It is user-adjustable from - 32768…+32767.
  • Page 455 Channel 01 Trip Level for a time period greater than the Analog Module 2 – Channel 01 Over Level Trip Delay. If the E300 relay trips on an Analog Module 2 – Channel 01 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 5-short blink pattern •...
  • Page 456 Analog Module 2 – Channel 01 Trip Level (Parameter 484) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 2 – Channel 01 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 457 Channel 02 Trip Level for a time period greater than the Analog Module 2 – Channel 02 Over Level Trip Delay. If the E300 relay trips on an Analog Module 2 – Channel 02 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 6-short blink pattern •...
  • Page 458 Analog Module 2 – Channel 02 Trip Level (Parameter 493) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 2 – Channel 02 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 459 Analog Module 2 – Channel 02 Warning Level (Parameter 494) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 2 – Channel 02 Over Level warning. It is user-adjustable from - 32768…+32767.
  • Page 460: Analog Module 3

    Channel 00 Trip Level for a time period greater than the Analog Module 3 – Channel 00 Over Level Trip Delay. If the E300 relay trips on an Analog Module 3 – Channel 00 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 7-short blink pattern •...
  • Page 461 Analog Module 3 – Channel 00 Trip Level (Parameter 506) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 3 – Channel 00 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 462 Channel 01 Trip Level for a time period greater than the Analog Module 3 – Channel 01 Over Level Trip Delay. If the E300 relay trips on an Analog Module 3 – Channel 01 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 8-short blink pattern •...
  • Page 463 Analog Module 3 – Channel 01 Trip Level (Parameter 515) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 3 – Channel 01 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 464 Analog Module 3 – Channel 01 Warning Level (Parameter 516) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 3 – Channel 01 Over Level warning. It is user-adjustable from - 32768…+32767.
  • Page 465 Channel 02 Trip Level for a time period greater than the Analog Module 3 – Channel 02 Over Level Trip Delay. If the E300 relay trips on an Analog Module 3 – Channel 02 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 9-short blink pattern •...
  • Page 466 Analog Module 3 – Channel 02 Trip Level (Parameter 524) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 3 – Channel 02 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 467: Analog Module 4

    Channel 00 Trip Level for a time period greater than the Analog Module 4 – Channel 00 Over Level Trip Delay. If the E300 relay trips on an Analog Module 4 – Channel 00 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 10-short blink pattern •...
  • Page 468 Analog Module 4 – Channel 00 Trip Level (Parameter 537) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 4 – Channel 00 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 469 Analog Module 4 – Channel 00 Warning Level (Parameter 538) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 4 – Channel 00 Over Level warning. It is user-adjustable from - 32768…+32767.
  • Page 470 Channel 01 Trip Level for a time period greater than the Analog Module 4 – Channel 01 Over Level Trip Delay. If the E300 relay trips on an Analog Module 4 – Channel 01 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 11-short blink pattern •...
  • Page 471 Analog Module 4 – Channel 01 Trip Level (Parameter 546) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 4 – Channel 01 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 472 Channel 02 Trip Level for a time period greater than the Analog Module 4 – Channel 02 Over Level Trip Delay. If the E300 relay trips on an Analog Module 4 – Channel 02 Over Level, the: • TRIP/WARN LED status indicator flashes a red 4-long / 12-short blink pattern •...
  • Page 473 Analog Module 4 – Channel 02 Trip Level (Parameter 555) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 4 – Channel 02 Over Level trip. It is user-adjustable from - 32768…+32767.
  • Page 474   Analog Module 4 – Channel 02 Over Level Warning The E300 relay indicates an Analog Module 4 – Channel 02 Over Level warning • No warning currently exists • Analog Module 4 – Channel 02 Over Level Warning is enabled •...
  • Page 475 Analog Module 4 – Channel 02 Warning Level (Parameter 556) allows you to define the magnitude of the analog signal in which the E300 relay trips on an Analog Module 4 – Channel 02 Over Level warning. It is user-adjustable from -32768…+32767.
  • Page 476 Chapter 6 Protective Trip and Warning Functions Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 477: Introduction

    • Clear command Trip Reset Trip Reset (Parameter 163) allows you to reset an E300 relay when it is in a tripped state. Trip Reset has the same functionality as pressing the blue reset button on E300 communication module and using the Trip Reset bit in the consumed output assemblies of a communication network.
  • Page 478: Factory Defaults

    The following pages list the available configuration presets and the values for the associated pre-configured configuration values. Factory Defaults When the Factory Defaults configuration preset command is selected, the E300 relay restores all configuration parameters back to their original factory default values.
  • Page 479 Commands Chapter 7 Parameter Name Default Units Parameter Name Default Units Parameter Name Default Units Value Value Value SetOperatingMode OutDig2ComFltVal Open InAnMod1Ch02Type Disable Overload InPt00Assignment Normal OutDig2ComIdlAct Goto Value InAMod1Ch2Format Eng Units InPt01Assignment Normal OutDig2ComIdlVal Open InAMod1C2TmpUnit Degrees C InPt02Assignment Normal OutDig3PrFltAct Goto Value...
  • Page 480 Chapter 7 Commands Parameter Name Default Units Parameter Name Default Units Parameter Name Default Units Value Value Value JamTripLevel %FLA OWInhibitTime Seconds InAMod3C0OpCktSt Upscale JamWarningLevel %FLA OWTripDelay Seconds InAnMod3Ch0RTDEn 3-Wire ULInhibitTime Seconds OWTripLevel 0.000 InAMod3C0TripDly Seconds ULTripDelay Seconds OWWarningLevel 0.000 InAMod3C0TripLvl ULTripLevel %FLA...
  • Page 481: Clear Command

    Goto Value NetStrtComIdlVal Open NetStrtFnlFltVal Open VoltageScale Volts Clear Command Clear Command (Parameter 165) allows you to clear historical logs, operating statistics, and energy data within the nonvolatile memory of the E300 relay. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 482: Clear Operating Statistics

    Size (Bytes) Scaling Factor Units Clear Operating Statistics When the Clear Operating Statistics command is issued, the E300 relay sets the following parameters to a value of zero (0): • Operating Time (Parameter 28) • Starts Counter (Parameter 29) Clear History Logs...
  • Page 483: Clear % Tcu

    Commands Chapter 7 Clear % TCU When the Clear %TCU command is issued, the E300 relay sets % Thermal Capacity Utilized (Parameter 1) to a value of zero (0). Clear kWh When the Clear kWh command is issued, the E300 relay sets the following parameters to a value of zero (0): •...
  • Page 484: Clear Kvah

    Chapter 7 Commands Clear kVAh When the Clear kVAh command is issued, the E300 relay sets the following parameters to a value of zero (0): • kVAh x 10 (Parameter 100) • kVAh x 10 (Parameter 101) • kVAh x 10 (Parameter 102) •...
  • Page 485: Rockwell Automation Publication 193-Um015E-En-P - October

    Commands Chapter 7 • kVARh Consumed x 10 (Parameter 87) • kVARh Consumed x 10 (Parameter 88) • kVARh Consumed x 10 (Parameter 89) • kVARh Generated x 10 (Parameter 90) • kVARh Generated x 10 (Parameter 91) • kVARh Generated x 10 (Parameter 92) •...
  • Page 486 Chapter 7 Commands Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 487: Metering And Diagnostics

    Percent Thermal Capacity Utilized (Parameter 1) reports the calculated percent thermal capacity utilization of the motor being monitored. When the percent thermal capacity utilization equals 100%, the E300 relay issues an overload trip. Table 420 - Percent Thermal Capacity Utilization (Parameter 1)
  • Page 488: Time To Trip

    Seconds Time To Reset After an overload trip, the E300 relay reports the time remaining until the device can be reset through Overload Time to Reset (Parameter 3). When the % Thermal Capacity Utilized value falls to or below the Overload Reset Level (Parameter 174), the Overload Time to Reset value indicates zero until the overload trip is reset.
  • Page 489: Current Trip Status

    Metering and Diagnostics Chapter 8 Current Trip Status Current Trip Status (Parameter 4) reports the status of the current-based protective trip functions. Table 423 - Current Trip Status (Parameter 4) Function X Overload Trip Phase Loss Trip Ground Fault Current Trip Stall Trip Jam Trip Underload Trip...
  • Page 490: Voltage Trip Status

    Chapter 8 Metering and Diagnostics Voltage Trip Status Voltage Trip Status (Parameter 5) reports the status of the voltage-based protective trip functions. Table 424 - Voltage Trip Status (Parameter 5) Function X Under Voltage Trip Over Voltage Trip Voltage Imbalance Trip Phase Rotation Mismatch Trip Under Frequency Trip Over Frequency Trip...
  • Page 491: Power Trip Status

    Metering and Diagnostics Chapter 8 Power Trip Status Power Trip Status (Parameter 6) reports the status of the voltage-based protective trip functions. Table 425 - Power Trip Status (Parameter 6) Function X Under kW Trip Over kW Trip Under kVAR Consumed Trip Over kVAR Consumed Trip Under kVAR Generated Trip Over kVAR Generated Trip...
  • Page 492: Current Warning Status

    Chapter 8 Metering and Diagnostics Current Warning Status Current Warning Status (Parameter 10) reports the status of the current-based protective warning functions. Table 427 - Current Warning Status (Parameter 10) Function X Overload Warning Reserved Ground Fault Warning Reserved Jam Warning Underload Warning Current Imbalance Warning L1 Under Current Warning...
  • Page 493: Power Warning Status

    Metering and Diagnostics Chapter 8 Power Warning Status Power Warning Status (Parameter 12) reports the status of the control-based protective warning functions. Table 429 - Power Warning Status (Parameter 12) Function X Under kW Warning Over kW Warning Under kVAR Consumed Warning Over kVAR Consumed Warning Under kVAR Generated Warning Over kVAR Generated Warning...
  • Page 494: Input Status 0

    Chapter 8 Metering and Diagnostics Input Status 0 Input Status 0 (Parameter 16) reports the state of the digital inputs on the E300 relay Control Module. Table 431 - Input Status 0 (Parameter 16) Function X Input Pt00 Input Pt01...
  • Page 495: Output Status

    Metering and Diagnostics Chapter 8 Output Status Output Status (Parameter 18) reports the state of the relay outputs on the E300 relay Control Module and Digital Expansion Modules. Table 433 - Output Status (Parameter 18) Function X Output Pt00 Output Pt01...
  • Page 496: Operator Station Status

    Chapter 8 Metering and Diagnostics Operator Station Status Operator Station Status (Parameter 19) reports the state of the E300 relay Operator Station input buttons and output LEDs. Table 434 - Operator Station Status (Parameter 19) Function X Operation Station I...
  • Page 497: Device Status 0

    Metering and Diagnostics Chapter 8 Device Status 0 Device Status 0 (Parameter 20) reports the general status of the E300 relay and the sensing capabilities that are present. Table 435 - Device Status 0 (Parameter 20) Function X Trip Present...
  • Page 498: Device Status 1

    Chapter 8 Metering and Diagnostics Device Status 1 Device Status 1 (Parameter 21) reports the specific features of the E300 relay Control and Sensing Modules, it reports which Expansion Digital Modules Analog Modules are present on the E300 relay Expansion Bus.
  • Page 499: Control Module Id

    Metering and Diagnostics Chapter 8 Control Module ID Control Module ID (Parameter 23) identifies which specific Control Module is present in the E300 relay system. Table 438 - Control Module ID (Parameter 23) Default Value 0 = Unknown 1 = 193-EIO-63-24D...
  • Page 500: Operator Station Id

    Scaling Factor Units Expansion Digital Module ID Expansion Digital Module ID (Parameter 26) identifies which specific Expansion Digital Modules are present on the Expansion Bus of the E300 relay system. Table 441 - Expansion Digital Module ID (Parameter 26 Function...
  • Page 501: Expansion Analog Module Id

    Metering and Diagnostics Chapter 8 Expansion Analog Module ID Expansion Analog Module ID (Parameter 27) identifies which specific Expansion Analog Modules are present on the Expansion Bus of the E300 relay system. Table 442 - Expansion Analog Module ID (Parameter 27) Function...
  • Page 502: Starts Available

    Table 446 - Time to Start (Parameter 31) Default Value Minimum Value Maximum Value 3600 Parameter Type UINT Size (Bytes) Scaling Factor Units Seconds Year Year (Parameter 32) reports the year in the virtual real-time clock of the E300 relay. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 503: Month

    Minimum Value Maximum Value Parameter Type UINT Size (Bytes) Scaling Factor Units Day (Parameter 34) reports the day in the virtual real-time clock of the E300 relay. Table 449 - Day (Parameter 34) Default Value Minimum Value Maximum Value Parameter Type...
  • Page 504: Minute

    Scaling Factor Units Invalid Configuration Parameter Invalid Configuration Parameter (Parameter 38) reports the parameter number that is causing a configuration trip in the E300 relay. See Chapter 4 for more information about a configuration fault. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 505: Invalid Configuration Cause

    Scaling Factor Units Mismatch Status Mismatch Status (Parameter 40) reports the module that is causing a mismatch trip or warning in the E300 relay. See Chapter 4 for more information on a mismatch fault. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 506: Current Monitor

    Mismatch Current Monitor The E300 relay current monitor diagnostics provides information on the current consumed by the load that the E300 relay is monitoring, and it provides diagnostics for a three-phase current system including imbalance and ground fault current. L1 Current L1 Current (Parameter 43) reports the current in Amperes flowing through the L1 and T1 power terminals of the E300 relay Sensing Module.
  • Page 507: L2 Current

    Metering and Diagnostics Chapter 8 L2 Current L2 Current (Parameter 44) reports the current in Amperes flowing through the L2 and T2 power terminals of the E300 relay Sensing Module. Table 457 - L2 Current (Parameter 44) Default Value 0.00 Minimum Value 0.00...
  • Page 508: L1 Percent Fla

    Chapter 8 Metering and Diagnostics L1 Percent FLA L1 Percent FLA (Parameter 47) reports the L1 current in comparison to the active Full Load Amps programmed in FLA (Parameter 171) and FLA2 (Parameter 177). L1 Percent FLA = L1 Current / Full Load Amps Table 460 - L1 Percent FLA (Parameter 47) Default Value Minimum Value...
  • Page 509: Average Percent Fla

    Ground Fault Current Ground Fault Current (Parameter 51) reports the ground fault current measured by the internal core balanced current transformer of the E300 relay Sensing Module or external core balanced current transformer. Table 464 - Ground Fault Current (Parameter 51)
  • Page 510: Voltage Monitor

    Size (Bytes) Scaling Factor Units Voltage Monitor The E300 relay’s voltage monitor diagnostics provides information on the voltage being supplied to the load. The voltage diagnostics include three-phase voltage, phase imbalance, phase rotation, and frequency. L1-L2 Voltage L1-L2 Voltage (Parameter 53) reports the voltage in volts in reference to the T1 and T2 power terminals of the E300 relay Sensing Module.
  • Page 511: L3-L1 Voltage

    Metering and Diagnostics Chapter 8 L3-L1 Voltage L3-L1 Voltage (Parameter 55) reports the voltage in volts in reference to the T3 and T1 power terminals of the E300 relay Sensing Module. Table 468 - L3-L1 Voltage (Parameter 55) Default Value Minimum Value Maximum Value 6553.5...
  • Page 512: L2-N Voltage

    Scaling Factor Units Volts L2-N Voltage L2-N Voltage (Parameter 58) reports the voltage in volts in reference to the T2 power terminal of the E300 relay Sensing Module. Table 471 - L2-N Voltage (Parameter 58) Default Value Minimum Value Maximum Value 6553.5...
  • Page 513: Voltage Imbalance

    Minimum Value Maximum Value Parameter Type UINT Size (Bytes) Scaling Factor Units Frequency Frequency (Parameter 62) reports the voltage frequency in Hertz of the monitored power system from the E300 relay Sensing Module. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 514: Phase Rotation

    Units Phase Rotation Phase Rotation (Parameter 63) reports the voltage phase rotation as ABC or ACB of the monitored power system from the E300 relay Sensing Module. Table 476 - Phase Rotation Trip Type (Parameter 63) Default Value 0 = No Rotation...
  • Page 515: L1 Real Power

    Metering and Diagnostics Chapter 8 L1 Real Power L1 Real Power (Parameter 64) reports the real power for line 1 in kW or MW depending on the configuration value for Power Scale (Parameter 377). When Voltage Mode (Parameter 352) is set to any Delta base setting, L1 Real Power is set to 0.
  • Page 516: Total Real Power

    Chapter 8 Metering and Diagnostics Table 480 - L3 Real Power (Parameter 66) Default Value 0.000 Minimum Value -2000000.000 Maximum Value 2000000.000 Parameter Type DINT Size (Bytes) Scaling Factor 1000 Units kW or MW Total Real Power Total Real Power (Parameter 67) reports the total real power of the monitored power conductors in kW or MW depending on the configuration value for Power Scale (Parameter 377).
  • Page 517: L2 Reactive Power

    Metering and Diagnostics Chapter 8 L2 Reactive Power L2 Reactive Power (Parameter 69) reports the reactive power for line 2 in kVAR or MVAR depending on the configuration value for Power Scale (Parameter 377). When Voltage Mode (Parameter 352) is set to any Delta base setting, L2 Reactive Power is set to 0.
  • Page 518: L1 Apparent Power

    Chapter 8 Metering and Diagnostics Total Reactive Power = (L1 Reactive Power + L2 Reactive Power) Table 485 - Total Reactive Power (Parameter 71) Default Value 0.000c Minimum Value -2000000.000 Maximum Value 2000000.000 Parameter Type DINT Size (Bytes) Scaling Factor 1000 Units kVAR or MVAR...
  • Page 519: L3 Apparent Power

    Metering and Diagnostics Chapter 8 L3 Apparent Power L3 Apparent Power (Parameter 74) reports the apparent power for line 3 in kVA or MVA depending on the configuration value for Power Scale (Parameter 377). When Voltage Mode (Parameter 352) is set to any Delta base setting, L3 Apparent Power is set to 0.
  • Page 520: L2 Power Factor Power

    Chapter 8 Metering and Diagnostics Table 490 - L1 Power Factor (Parameter 76) Default Value Minimum Value -100.0 Maximum Value 100.0 Parameter Type Size (Bytes) Scaling Factor Units L2 Power Factor Power L2 Power Factor (Parameter 77) reports the power factor for line 2 in percentage. When Voltage Mode (Parameter 352) is set to any Delta base setting, L2 Power Factor is set to 0.
  • Page 521: Energy Monitor

    Size (Bytes) Scaling Factor Units Energy Monitor The E300 relay’s energy monitor diagnostics provides information on the electrical energy the load is consuming. The energy diagnostics include kWh, kVARh, kVAh, kW Demand, kVAR Demand, and kVA Demand. kWh 10 kWh 10 (Parameter 80) reports a component of total real energy (kWh).
  • Page 522: Kwh 10^0

    Chapter 8 Metering and Diagnostics Table 495 - kWh x 10E6 (Parameter 81) Default Value Minimum Value -999 Maximum Value Parameter Type Size (Bytes) Scaling Factor Units kWh 10 kWh 10 (Parameter 82) reports a component of total real energy (kWh). Multiply this value by 10 and add to the other kWh parameters.
  • Page 523: Kwh 10^-3

    Metering and Diagnostics Chapter 8 kWh 10 kWh 10 (Parameter 84) reports a component of total real energy (kWh). Multiply this value by 10 and add to the other kWh parameters. Represents 000,000,000,000. XXX kWh Table 498 - kWh x 10 (Parameter 84) Default Value Minimum Value...
  • Page 524: Kvarh Consumed 10^3

    Chapter 8 Metering and Diagnostics Table 500 - kVARh Consumed x 10 (Parameter 86) Default Value Minimum Value -999 Maximum Value Parameter Type Size (Bytes) Scaling Factor Units kVARh Consumed 10 kVARh Consumed 10 (Parameter 87) reports a component of total reactive energy consumed (kVARh).
  • Page 525: Kvarh Consumed 10^-3

    Metering and Diagnostics Chapter 8 kVARh Consumed 10 kVARh Consumed 10 (Parameter 89) reports a component of total reactive energy consumed (kVARh). Multiply this value by 10 and add to the other kVARh Consumed parameters. Represents 000,000,000,000. XXX kVARh Table 503 - kVARh Consumed x 10 (Parameter 89) Default Value Minimum Value...
  • Page 526: Kvarh Generated 10^3

    Chapter 8 Metering and Diagnostics Table 505 - kVARh Generated x 10 (Parameter 91) Default Value Minimum Value -999 Maximum Value Parameter Type Size (Bytes) Scaling Factor Units kVARh Generated 10 kVARh Generated 10 (Parameter 92) reports a component of total reactive energy generated (kVARh).
  • Page 527: Kvarh Generated 10^-3

    Metering and Diagnostics Chapter 8 kVARh Generated 10 kVARh Generated 10 (Parameter 94) reports a component of total reactive energy generated (kVARh). Multiply this value by 10 and add to the other kVARh Generated parameters. Represents 000,000,000,000. XXX kVARh Table 508 - kVARh Generated x 10 (Parameter 94) Default Value Minimum Value...
  • Page 528: Kvarh Net 10^3

    Chapter 8 Metering and Diagnostics Table 510 - kVARh Net x 10 (Parameter 96) Default Value Minimum Value -999 Maximum Value Parameter Type Size (Bytes) Scaling Factor Units kVARh Net 10 kVARh Net 10 (Parameter 97) reports a component of total reactive energy net (kVARh).
  • Page 529: Kvarh Net 10^-3

    Metering and Diagnostics Chapter 8 kVARh Net 10 kVARh Net 10 (Parameter 99) reports a component of total reactive energy net (kVARh). Multiply this value by 10 and add to the other kVARh Net parameters. Represents 000,000,000,000. XXX kVARh Table 513 - kVARh Net x 10 (Parameter 99) Default Value Minimum Value...
  • Page 530: Kvah 10^3

    Chapter 8 Metering and Diagnostics Table 515 - kVAh x 10 (Parameter 101) Default Value Minimum Value -999 Maximum Value Parameter Type Size (Bytes) Scaling Factor Units kVAh 10 kVAh 10 (Parameter 102) reports a component of total apparent energy (kVAh).
  • Page 531: Kvah 10^-3

    Metering and Diagnostics Chapter 8 kVAh 10 kVAh 10 (Parameter 104) reports a component of total apparent energy (kVAh). Multiply this value by 10 and add to the other kVAh parameters. Represents 000,000,000,000. XXX kVAh Table 518 - kVAh x 10 (Parameter 104) Default Value Minimum Value...
  • Page 532: Kvar Demand

    Chapter 8 Metering and Diagnostics kVAR Demand kVAR Demand (Parameter 107) reports the average reactive energy usage in kVAR over a defined period. Table 521 - kVAR Demand (Parameter 107) Default Value 0.000 Minimum Value -2000000.000 Maximum Value 2000000.000 Parameter Type DINT Size (Bytes) Scaling Factor...
  • Page 533: Analog Monitor

    1000 Units Analog Monitor The E300 relay’s Analog I/O Expansion Modules scan up to three analog signals per module. This information can be used to monitor the following analog applications: • Motor winding and bearing temperatures that are measured by RTD sensors •...
  • Page 534 Chapter 8 Metering and Diagnostics Table 526 - Analog Module 1 – Input Channel 01 (Parameter 112) Default Value Minimum Value -32768 Maximum Value 32767 Parameter Type Size (Bytes) Scaling Factor Units   Analog Module 1 – Input Channel 02 Analog Module 1 –...
  • Page 535: Analog Module 2

    Metering and Diagnostics Chapter 8 Analog Module 2 Analog Module 2 – Input Channel 00 Analog Module 2 – Input Channel 00 (Parameter 114) reports the monitored value of Analog Module 2 – Input Channel 00. Table 529 - Analog Module 2 – Input Channel 00 (Parameter 114) Default Value Minimum Value -32768...
  • Page 536: Analog Module 3

    Chapter 8 Metering and Diagnostics Table 532 - Analog Module 2 Status (Parameter 124) Function X Input Channel 00 Open Circuit                               Input Channel 00 Over Range  ...
  • Page 537 Metering and Diagnostics Chapter 8 Table 534 - Analog Module 3 – Input Channel 01 (Parameter 118) Default Value Minimum Value -32768 Maximum Value 32767 Parameter Type Size (Bytes) Scaling Factor Units   Analog Module 3 – Input Channel 02 Analog Module 3 –...
  • Page 538: Analog Module 4

    Chapter 8 Metering and Diagnostics Analog Module 4 Analog Module 4 – Input Channel 00 Analog Module 4 – Input Channel 00 (Parameter 120) reports the monitored value of Analog Module 4 – Input Channel 00. Table 537 - Analog Module 4 – Input Channel 00 (Parameter 120) Default Value Minimum Value -32768...
  • Page 539: Trip / Warning History

    A mask is available to limit which trip and warning events are logged to the history’s memory. Trip History When the E300 relay issues a trip, the reason for the trip is recorded into the Trip History. Table 541 lists the codes that are available for the trip history records.
  • Page 540 Chapter 8 Metering and Diagnostics Trip History Code Description L2 Current Lost for longer than the L2 Loss Trip Delay L3 Current Lost for longer than the L3 Loss Trip Delay Line to Line Under-Voltage condition detected Line to Line Over-Voltage condition detected Phase to phase voltage imbalance detected The unit detects the supply voltage phases are rotated Line voltage frequency is below trip level...
  • Page 541 Metering and Diagnostics Chapter 8 Trip History Code Description Input Channel 01 on Analog Module 3 exceeded its Trip Level Input Channel 02 on Analog Module 3 exceeded its Trip Level Input Channel 00 on Analog Module 4 exceeded its Trip Level Input Channel 01 on Analog Module 4 exceeded its Trip Level Input Channel 02 on Analog Module 4 exceeded its Trip Level External NVS Chip has detected communication timeout error...
  • Page 542 Units   Trip History Mask You can decide which trip events are recorded into the E300 relay’s trip history by using the Trip History Masks. Current Trip History Mask Current Trip History Mask (Parameter 139) allows you to select which current- based trip events are recorded in the trip history.
  • Page 543 Metering and Diagnostics Chapter 8 Table 542 - Current Trip History Mask (Parameter 139) Function X Overload Trip Phase Loss Trip Ground Fault Trip Stall Trip Jam Trip Underload Trip Current Imbalance Trip L1 Under Current Trip L2 Under Current Trip L3 Under Current Trip L1 Over Current Trip L2 Over Current Trip...
  • Page 544 Chapter 8 Metering and Diagnostics Table 544 - Power Trip History Mask (Parameter 141) Function X Under kW Trip Over kW Trip Under kVAR Consumed Trip Over kVAR Consumed Trip Under kVAR Generated Trip Over kVAR Generated Trip Under kVA Trip Over kVA Trip Under Power Factor Lagging Trip Over Power Factor Lagging Trip...
  • Page 545: Warning History

            Warning History When the E300 relay issues a warning, the reason for the warning is recorded into the Warning History. Table 547 lists the codes that are available for the warning history records. Table 547 - Warning History Codes...
  • Page 546 Chapter 8 Metering and Diagnostics Warning History Code Description Under Reactive Power Generated (-kVAR) condition detected Over Reactive Power Generated (-kVAR) condition detected Total Apparent Power (kVA) is below warning level Total Apparent Power (kVA) exceeded warning level Under Total Power Factor Lagging (-PF) condition detected Over Total Power Factor Lagging (-PF) condition detected Under Total Power Factor Leading (+PF) condition detected Over Total Power Factor Leading (+PF) condition detected...
  • Page 547 Metering and Diagnostics Chapter 8 Warning History 0 Warning History 0 (Parameter 133) reports the most recent warning event. Warning History 0 (Parameter 133) Default Value Minimum Value Maximum Value Parameter Type UINT Size (Bytes) Scaling Factor Units   Warning History 1 Warning History 1 (Parameter 134) reports the second most recent warning event.
  • Page 548 Units   Warning History Mask You can decide which warning events are recorded into the E300 relay’s warning history by using the Warning History Masks. Current Warning History Mask Current Warning History Mask (Parameter 145) allows you to select which current-based warning events are recorded in the warning history.
  • Page 549 Metering and Diagnostics Chapter 8 Table 548 - Current Warning History Mask (Parameter 145) Function X Overload Warning Reserved Ground Fault Warning Reserved Jam Warning Underload Warning Current Imbalance Warning L1 Under Current Trip L2 Under Current Trip L3 Under Current Trip L1 Over Current Trip L2 Over Current Trip L3 Over Current Trip...
  • Page 550 Chapter 8 Metering and Diagnostics Table 550 - Power Warning History Mask (Parameter 147) Function X Under kW Warning Over kW Warning Under kVAR Consumed Warning Over kVAR Consumed Warning Under kVAR Generated Warning Over kVAR Generated Warning Under kVA Warning Over kVA Warning Under Power Factor Lagging Warning Over Power Factor Lagging Warning...
  • Page 551: Trip Snapshot

    Trip Snapshot L1-L2 Voltage Trip Snapshot L1-L2 Voltage (Parameter 156) reports the voltage in volts in reference to the T1 and T2 power terminals of the E300 relay Sensing Module at the time of the most recent trip event. Table 553 - Trip Snapshot L1-L2 Voltage (Parameter 156)
  • Page 552: Trip Snapshot L3-L1 Voltage

    Trip Snapshot L3-L1 Voltage Trip Snapshot L3-L1 Voltage (Parameter 158) reports the voltage in volts in reference to the T3 and T1 power terminals of the E300 relay Sensing Module at the time of the most recent trip event. Table 555 - Trip Snapshot L3-L1 Voltage (Parameter 158)
  • Page 553: Trip Snapshot Total Apparent Power

    Metering and Diagnostics Chapter 8 Trip Snapshot Total Apparent Power Trip Snapshot Total Apparent Power (Parameter 161) reports the total apparent power of the monitored power conductors in kVA at the time of the most recent trip event. Table 558 - Trip Snapshot Total Apparent Power (Parameter 161) Default Value 0.000 Minimum Value...
  • Page 554 Chapter 8 Metering and Diagnostics Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 555: Devicelogix™ Functionality

    You can select one of the preprogrammed DeviceLogix programs (see Chapter 5 – Operating Modes) embedded in the E300 relay, or you can create a custom program in function block or ladder logic. You can use the E300 Add-on Profile in Studio 5000 software, RSNetWorx™...
  • Page 556: Devicelogix Programming

    E300 outputs relays are controlled by the DeviceLogix program regardless of the Communication Fault Mode or Communication Idle Mode. If DeviceLogix functionality is not enabled, the E300 output relays are controlled by the Communication Fault Mode or Communication Idle Mode parameters if a communication fault or communication idle condition occurs –...
  • Page 557 E300 digital inputs and output relays. There are many reasons to use the DeviceLogix functionality, but some of the most common are listed below: •...
  • Page 558 Chapter 9 DeviceLogix™ Functionality Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 559: Ethernet/Ip Communication

    EtherNet/IP scanner such as an Allen-Bradley Logix controller. Network Design The E300 relay EtherNet/IP Communication Module has dual Ethernet ports that function as an Ethernet switch with RJ45 ports to connect Ethernet cable CAT5 type or better to. Rockwell Automation offers a wide variety of Allen- Bradley Ethernet patch cables with its Bulletin 1585 line of Ethernet cables (http://ab.rockwellautomation.com/Connection-Devices/RJ45-Network-...
  • Page 560 Chapter 10 EtherNet/IP Communication Rockwell Automation also offers a line of managed and unmanaged Allen-Bradley Ethernet Switches with its Stratix family of Ethernet switches. See http://ab.rockwellautomation.com/Networks-and-Communication/Ethernet- IP-Infrastructure for more information. The E300 relay EtherNet/IP Communication Module also supports an ethernet...
  • Page 561: Determining Network Parameters

    EtherNet/IP Communication Chapter 10 Determining Network To operate an EtherNet/IP network, you must define these parameters. Parameters Table 562 - EtherNet/IP Network Parameters Network Parameter Description IP Address The IP address uniquely identifies the module. The IP address is in the form xxx.xxx.xxx.xxx where each xxx is a number from 0...255.
  • Page 562: Setting The Ip Network Address

    • A web browser and MAC scanner software EtherNet/IP Node Address Selection Switches The E300 relay EtherNet/IP Communication Module comes with three node address selection switches that allow you to select the last octet for the IP address 192.168.1.xxx.
  • Page 563: Assign Network Parameters Via The Bootp/ Dhcp Utility

    Before starting the BOOTP/DHCP utility, make sure you have the hardware MAC IMPORTANT ID of the module, which is printed on the front of the E300 relay EtherNet/IP Communication Module. The MAC ID has a format similar to: 00-0b-db-14-55- This utility recognizes DHCP-enabled devices and provides an interface to configure a static IP address for each device.
  • Page 564 6. Type the IP address, host name, and a module description. 7. Click OK. 8. Cycle power to the E300 relay EtherNet/IP Communication Module. 9. To permanently assign this configuration to the module: Select the module in the Relation List panel and click Disable BOOTP/DHCP.
  • Page 565: Mac Scanner Software

    Colasoft® - http://www.colasoft.com/). Follow these steps to configure the module using this method. 1. Locate and identify the MAC ID printed on the label of the E300 relay EtherNet/IP Communication Module. This address has a format that is similar to: 00-0b-db-14-55-35 2.
  • Page 566: Web Server

    DHCP enabled. Web Server As a security precaution the embedded web server of the E300 relay EtherNet/IP Communication Module is disabled by default. To temporarily enable the web server to make it permanently available, you must enter into Administration Mode.
  • Page 567 For EtherNet/IP Communication Modules with firmware v1.004 and higher, the default password is the serial number of the E300 EtherNet/IP Communication Module which can be found on the home page of the E300 web server. We recommend that you change the password for user name Administrator to deter any malicious activity through the E300 EtherNet/IP Communication Module’s web server.
  • Page 568: Permanently Enabling The Web Server

    If the password for user name Administrator is misplaced or forgotten, you can restore the password to the factory default value by turning the rotary dials on the E300 EtherNet/IP Communication Module to 8-8-8 and cycling power. This resets all EtherNet/IP communication settings and E300 configuration parameters back to the factory default values.
  • Page 569: Duplicate Ip Address Detection

    EtherNet/IP Communication Chapter 10 5. Enable the Web Server Control and press Apply Changes. Duplicate IP Address When you change the IP address or connect the module to an EtherNet/IP network, the module checks to make sure that the IP address assigned to this Detection module does not match the address of any other network device.
  • Page 570: Dns Addressing

    (for example, Rockwell Automation RSLinx Classic and RSNetWorx for EtherNet/IP software). Register the module by installing an EDS file. The EDS file for the E300 relay EtherNet/IP Communication Module can be obtained from one of two locations: •...
  • Page 571: Download The Eds File

    RSWho screen using these steps: 1. Open RSLinx Classic and browse the EtherNet/IP network that has the E300 relay. It is identified with a yellow question mark. Right click on the unrecognized device and select "Upload EDS File from Device".
  • Page 572 EtherNet/IP Communication From the EDS File Download Site The EDS file for the E300 relay EtherNet/IP Communication Module can also be downloaded from the Allen-Bradley EDS File download site. Using a web browser on the personal computer that is connected to the internet, you can download the EDS file by following these steps: 1.
  • Page 573 4. Start the EDS Hardware Installation Tool located at Start>Programs>Rockwell Software>RSLinx Tools and Add a new device 5. Using the EDS Wizard, install the downloaded E300 relay EtherNet/IP Communication Module EDS file. 6. When finished, RSLinx Classic recognizes the newly registered E300 relay EtherNet/IP Communication Module.
  • Page 574: View And Configure Parameters

    The web server in the E300 relay EtherNet/IP Communication Module when enabled is able to view and configure parameters for the E300 relay. You can use Parameters the web interface to edit parameters for E300 relay if it is not being scanned by an EtherNet/IP scanner. Viewing Parameters Follow the steps below to view parameters using the web interface of the E300 relay EtherNet/IP Communication Module.
  • Page 575: Editing Parameters

    EtherNet/IP Communication Chapter 10 4. E300 relay EtherNet/IP Communication Module web page displays up to 17 parameters per web page. If more than 17 parameters exist for a parameter group, use the navigation arrows to display the other parameters. Editing Parameters Follow the steps below to edit configuration parameters using the web interface of the E300 relay EtherNet/IP Communication Module.
  • Page 576 Chapter 10 EtherNet/IP Communication 3. Click Apply once all parameter edits have been completed. The E300 relay EtherNet/IP Communication Module downloads the new parameter values to the device. 4. A confirmation window appears. Press OK. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 577: Automation Controller Communication

    Module on an EtherNet/IP network. An Add-on Profile is available for the E300 relay EtherNet/ IP Communication Module and can be used with RSLogix 5000 version 16 and higher and Studio 5000 version 21 and higher. The E300 Add-on Profile provides a graphical user interface to modify configuration parameters, it provides intuitive input and output tag names, and it enables Automation Device Configuration.
  • Page 578: Add-On Profile

    E300 relay to a new or existing RSLogix 5000 or Studio 5000 project and retain the configuration information that is stored in the E300 relay using...
  • Page 579 2. Right click on the Ethernet tree of the EtherNet/IP scanner that is in the ControlLogix chassis and select Discover Modules. 3. Choose the E300 relay to be added to the EtherNet/IP scanner’s scan list and press Create. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 580 EtherNet/IP Communication 4. You are prompted whether you would like to upload the configuration settings from the E300 relay. Press Upload to read the configuration settings from the E300 relay. ATTENTION: If an Upload command is not performed during Module Discovery, any preconfigured E300 relay configuration data is not retained when adding an E300 relay online to a ControlLogix project.
  • Page 581 E300 relay online to a ControlLogix project. If the upload is not successful due to an E300 configuration trip, a display appears indicating that the profile is using default settings. Press OK to continue, and press Cancel to abort the Module Discovery process.
  • Page 582 Chapter 10 EtherNet/IP Communication 6. Enter a name for the E300 relay. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 583 When finished, press OK. 8. A display appears, verifying that you are about to create the module online. Press Yes to add the preconfigured E300 relay to the Ethernet tree, and communication between the E300 relay and the ControlLogix controller begins.
  • Page 584 RSLogix 5000 or Studio 5000 project. If you are running IntelliCENTER Integration Assistant for Logix 5000, you can skip to step 4 and repeat these steps for each E300 relay that was added to the project while the project is offline.
  • Page 585 2. Right click on the Ethernet tree of the EtherNet/IP scanner and select New Module. 3. Search for an E300 relay by typing E300 in the search field, select the 193- ECM-ETR E300 relay, 2-Port device profile, and press Create.
  • Page 586 Chapter 10 EtherNet/IP Communication 4. Type a name for the E300 relay, and press Change to update the module definition. 5. Press Upload to read the configuration settings from the E300 relay. ATTENTION: If an Upload command is not performed, any preconfigured E300...
  • Page 587 EtherNet/IP Communication Chapter 10 6. Select the appropriate E300 relay that is on the EtherNet/IP network, and press OK. 7. If the upload is successful, a display appears indicating the success of this command. Press OK to continue. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 588 E300 relay online to a ControlLogix project. If the upload is not successful due to an E300 configuration trip, a display appears indicating that the profile is using its existing settings. Press OK to continue. Read parameters 38 and 39 from the E300 relay to determine the reason for the configuration trip.
  • Page 589 Chapter 10 ATTENTION: If an Upload command is not successful when manually adding an E300 relay, failure to cancel the new module addition process results in the loss of any preconfigured E300 relay configuration data. Default values are used when the RSLogix 5000 or Studio 5000 project is downloaded to the Logix controller or when adding an E300 relay online to a ControlLogix project.
  • Page 590 Chapter 10 EtherNet/IP Communication 8. Additional module definition changes to E300 relay can be made. Press OK when finished making all module definition changes. 9. Press Yes to apply these changes to the module definition and to update the configuration parameters with the data from the upload command.
  • Page 591 10. Navigate through the E300 Overload Relay device profile tree to make additional configuration edits. When finished, press OK. 11. For users who are adding a preconfigured E300 relay offline in an RSLogix 5000 or Studio 5000 project, download the updated project to the Logix...
  • Page 592 Chapter 10 EtherNet/IP Communication Press Yes to add the preconfigured E300 relay to the Ethernet tree and establish communication between the E300 relay; the ControlLogix controller begins. The E300 relay’s configuration data is retained and stored in the ControlLogix controller and in the RSLogix 5000 or Studio 5000 project.
  • Page 593: Offline E300 Relay Logix Integration With Add-On Profile

    EtherNet/IP Communication Chapter 10 13. To control the output relays or issue a remote reset command to the E300 relay navigate to the output tags created by the Add-on Profile. Offline E300 relay Logix Integration with Add-on Profile The E300 Add-on Profile for RSLogix 5000 and Studio 5000 provides an efficient means to allow you to configure an E300 relay offline in a new or existing project.
  • Page 594 Chapter 10 EtherNet/IP Communication Follow the steps provided to integrate an E300 relay using the E300 Add-on Profile to a Logix controller offline: 1. Create a new or open an existing RSLogix 5000 or Studio 5000 project and verify that the Logix controller is offline.
  • Page 595 4. Enter a name and the IP address for the E300 relay EtherNet/IP Communication Module. The name creates tags in RSLogix 5000 or Studio 5000 that can be used to read and write data from the E300 relay EtherNet/IP Communication Module.
  • Page 596 Chapter 5 for more information about Operating Modes. 9. The E300 relay allows you to configure up to eight Datalinks. Select the parameters for the additional data to be included with the input tags. Press OK to complete the module definition.
  • Page 597 To configure the other configuration parameters for Control Modules with firmware v1.000 and v2.000, navigate to the configuration tags of the newly added E300 relay. Modify the configuration tags directly to enable and adjust the Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 598 E300 relay. 12. When finished, press OK to complete the addition of the E300 relay to the Logix system. 13. Download the project to the Logix controller, and place the controller into Run Mode.
  • Page 599: Offline E300 Relay Integration With A Generic Profile

    Communication Module, navigate to input tags created by the Add-on Profile. 15. To control the output relays or remote reset the E300 relay navigate to the output tags created by the Add-on Profile. Offline E300 relay Integration with a Generic Profile...
  • Page 600 Chapter 10 EtherNet/IP Communication 1. Create a new or open an existing RSLogix 5000 or Studio 5000 project and verify that the Logix controller is offline. 2. Right-click on the EtherNet/IP scanner within the I/O Configuration folder, then select New Module to open the Select Module Type window. 3.
  • Page 601 4. Enter a name and the IP address for the E300 relay EtherNet/IP Communication Module. The name creates tags in RSLogix 5000 or Studio 5000 that can be used to read and write data from the E300 relay EtherNet/IP Communication Module.
  • Page 602 Chapter 10 EtherNet/IP Communication 7. To access the data provided by the E300 relay EtherNet/IP Communication Module, navigate to input tags created by the Generic Profile. Table 565 represents the Input Assembly data. Table 565 - Instance 199 - Input (Produced) Assembly...
  • Page 603 EtherNet/IP Communication Chapter 10 DINT 15 14 13 12 11 10 TotalRealPower TotalReactivePwr TotalApparentPwr TotalPowerFactor Datalink0 Datalink1 Datalink2 Datalink3 Datalink4 Datalink5 Datalink6 Datalink7 PtDeviceOuts AnDeviceOuts InAnMod1Ch00 InAnMod1Ch01 InAnMod1Ch02 Reserved InAnMod2Ch00 InAnMod2Ch01 InAnMod2Ch02 Reserved InAnMod3Ch00 InAnMod3Ch01 InAnMod3Ch02 Reserved InAnMod4Ch00 InAnMod4Ch01 InAnMod4Ch02 Reserved Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 604 Chapter 10 EtherNet/IP Communication For example, E300_Overload:I.Data[12] represents L1 Current as shown below. 8. To control the output relays or remotely reset the E300 relay, navigate to the output tags created by the Generic Profile. Table 566 represents the Input Assembly data.
  • Page 605: E-Mail/Text

    EtherNet/IP Communication Chapter 10 E-mail/Text The E300 relay EtherNet/IP Communication Module is capable of sending e- mail messages and text notifications for different trip and warning events using a Simple Mail Transfer Protocol (SMTP) server. The subject and body contents in the e-mail message is created from the: •...
  • Page 606: E-Mail Configuration

    Transfer Protocol (SMTP) server must be configured and notifications must be selected. Follow these steps to configure an e-mail notification. 1. In the web browser, enter the IP address of the E300 relay EtherNet/IP Communication Module URL of the web browser.
  • Page 607 You can change these after the initial configurations. 7. Click Apply to accept the configuration 8. When an E300 relay event occurs, the e-mail message looks like the following: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 608: Text Notifications

    EtherNet/IP Communication Text Notifications The E300 relay EtherNet/IP Communication Module can send a text message to a wireless phone by e-mailing the wireless phone's service provider. The format for the text message is provided by the service provider and looks similar to the example formats below.
  • Page 609 Reset the E300 EtherNet/IP Communication Module. Reset the E300 EtherNet/IP Communication Module or Flashing The E300 Overload Relay is in a fault state. verify the validity of the data in the configuration assembly. Cycle power to the device. If the fault still exists, replace Solid Diagnostics test failed on power-up/reset.
  • Page 610 Chapter 10 EtherNet/IP Communication Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 611: Firmware Updates

    E300 relay module. Firmware Compatibility The sensing, control, and communication modules of an E300 relay have their own firmware for the functionality of the module and its subsystems. You can update each module and its associated subsystems by using the ControlFLASH utility, which is the same utility that is used to download firmware into a Logix- based controller.
  • Page 612: Updating Firmware

    193-EOS-SDS — — — — — — — Updating Firmware Firmware for the E300 relay modules and their associated subsystems can be downloaded from the Product Compatibility and Download Center located at http://www.rockwellautomation.com/rockwellautomation/support/pcdc.page?. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 613 Firmware Updates Chapter 11 After the firmware has been downloaded and installed, run the ControlFLASH application by selecting ControlFLASH from the Start menu located at Start -> FLASH Programming Tools -> ControlFlash as shown below. Select the Local directory to locate the ControlFLASH update file and press Next to continue.
  • Page 614 Chapter 11 Firmware Updates Select E300 Overload Relay update file and press Next. Select the specific device to update and press OK. Select the E300 Overload Relay and press OK. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 615 Firmware Updates Chapter 11 Select the specific firmware revision for the firmware update and press Next. Press Finish to begin the firmware update process. Verify that you want to update the firmware for that specific module subsystem by pressing Yes. Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 616 Chapter 11 Firmware Updates The ControlFLASH utility begins to download the new firmware files. At the end of the download, the device automatically resets. When the device finishes its power cycle sequence, a successful firmware update message is displayed. Press OK to finish the firmware update process. Do not interrupt power or communication to the device during the firmware IMPORTANT update process.
  • Page 617: Troubleshooting

    All E300 relay Communication Modules and Operator Station have two diagnostic status indicators: Power LED and Trip/Warn LED. You can use these diagnostic status indicators to help identify the state of the E300 relay and the reason for the trip or warning event.
  • Page 618: Module Status (Ms) Led

    Network Status (NS) LED of the E300 EtherNet/IP Communication Module. Trip/Warn LED The E300 relay Power LED identifies the reason for the trip or warning event. The E300 relay displays a long and short blinking pattern to identify the reason for the trip or warning event.
  • Page 619 Troubleshooting Chapter 12 Code Long Blink Pattern Short Blink Pattern Under Voltage Over Voltage Voltage Imbalance Phase Rotation Mismatch Under Frequency Over Frequency Under kW Over kW Under kVAR Consumed Over kVAR Consumed Under kVAR Generated Over kVAR Generated Under kVA Over kVA Under PF Lagging Over PF Lagging...
  • Page 620: Resetting A Trip

    ATTENTION: Resetting a trip does not correct the cause for the trip. Take corrective action before resetting the trip. The E300 relay trip condition can be reset by taking one of the following actions: • Actuating the Blue Trip/Reset button on the E300 relay Communication Module •...
  • Page 621 Troubleshooting Chapter 12 Trip Description Possible Cause Corrective Action 1. Missing supply phase 1. Check for open line (for example, blown fuse). 2. Check all power terminations from the branch circuit-protecting device down to the motor for 2. Poor electrical connection proper tightness.
  • Page 622 Chapter 12 Troubleshooting Trip Description Possible Cause Corrective Action 1. For three-phase applications, Single/Three Phase 1. Single/Three Phase (Parameter 176) is set (Parameter 176) should be set to “Three-Phase”; for to "Single Phase" and current is being single-phase applications, verify that current is sensed in phase L3 during motor operation.
  • Page 623: Specifications

    159…265V AC Maximum Inrush Current 3 A for 30 ms 10 A for 1 ms 8 A for 3 ms Maximum Power Consumption E300: E300 with expansion: Maximum Power Interruption Time 5 ms 10 ms 10 ms 5 ms 10 ms...
  • Page 624 Appendix A Specifications Table 574 - Output Relay Ratings (Control Module and Expansion Digital Module) Inductive Load Rating (p.f. = 0.4) 2 A, 250V AC (L/R = 7 ms) 2 A, 30V DC Short Circuit Current Rating 1,000 A KTK-R-6 Recommended Control Circuit Fuse (6 A, 600 V) Rated Number of Operations...
  • Page 625: Low Voltage Directive

    Response Time 800 ms Low Voltage Directive The E300™ Electronic Overload Relay expansion digital modules are tested to comply with EN60947-5-1 Low-voltage switchgear and controlgear Part 5-1: Control circuit devices and switching elements. Table 578 - Expansion Digital I/O Modules...
  • Page 626: Environmental Specifications

    Temperature rating based on 120V AC or 240V AC control module with 5A going through relays 0, 1, and 2. NOTE: The E300 relay expansion power supplies (Cat. Nos. 193-EXP-PS-AC and 193-EXP-PS-DC) surrounding air temperature must not exceed 55 °C (131 °F).
  • Page 627: Electromagnetic Compatibility Specifications

    Specifications Appendix A Electromagnetic Table 582 - Electromagnetic Compatibility Specifications Compatibility Specifications Electrostatic Discharge Immunity 8kV Air Discharge Test Level: 6kV Contact Discharge Performance Criteria: RF Immunity 10V/m Test Level: Performance Criteria: Electrical Fast Transient/Burst Immunity 4kV (Power) Test Level: 2kV (Control and Comm) Performance Criteria: Surge Immunity...
  • Page 628: Protection

    Appendix A Specifications Protection Table 583 - Protection Trip Warning Overload Phase Loss Ground Fault Stall Underload Thermistor (PTC) Current Imbalance Remote Trip Blocked Start/Start Inhibit Under Voltage L-L Over Voltage L-L Voltage Unbalance Phase Rotation Under Frequency Over Frequency Under Real Power (kW) Over Real Power (kW) Under Reactive Power Consumed (+kVAR)
  • Page 629: Accuracy

    ±5% of Full Scale Voltage ±2% of Sensing Module Voltage Range Power ±5% Protection Timers All E300 relay trip timers shall have a resolution of ±0.1 s or 0.1 s/25 s (whichever is greater). Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 630 Appendix A Specifications Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 631: Overview

    Appendix Parameter List Overview This appendix lists all accessible parameters of the E300™ Electronic Overload Relay in numerical order. The setting range for each parameter is provided to assist especially for applications where it is desirable to set values from a logic controller via a network connection.
  • Page 632 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor TripStsPower I.Protection.UnderRealPowerTrip Trip Status bits for UINT Bit0= UnderKWTrip I.Protection.OverRealPowerTrip Power Bit1= OverKWTrip I.Protection.UnderReactivePowerConsumedTrip Bit2= UnderKVARConTrip I.Protection.OverReactivePowerConsumedTrip Bit3= OverKVARConTrip I.Protection.UnderReactivePowerGeneratedTrip Bit4= UnderKVARGenTrip I.Protection.OverReactivePowerGeneratedTrip...
  • Page 633 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Device Monitor WarnStsControl Warning Status UINT BBit0= Reserved (continued) I.Protection.PTCWarning bits for Control Bit1= PTCWarning Bit2= DLXWarning Bit3= Reserved Bit4= Reserved Bit5= Reserved Bit6= Reserved...
  • Page 634 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor DeviceStatus0 I.TripPresent Device Status bits UINT Bit0= TripPresent I.WarningPresent Bit1= WarningPresent I.InvalidConfiguration Bit2= InvalidConfig I.MotorCurrentPresent Bit3= CurrentPresent I.GroundFaultCurrentPresent Bit4= GFCurrentPresent I.MotorVoltagePresent Bit5= VoltagePresent I.EmergencyStartEnabled...
  • Page 635 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor StartsCounter Number of starts UINT 65535 Starts Available Number of Starts USINT Available TimeToStart The Time to Start UINT 3600 Seconds Year...
  • Page 636 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Voltage Monitor AvgVoltageLtoN Average RMS UINT 65535 Volt (Continued) Voltage Line- Neutral VoltageUnbalance Voltage Unbalance USINT VoltageFrequency Voltage Frequency UINT 2500 VPhaseRotation Voltage Phase...
  • Page 637 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor kVARhCon10E-3 Total Reactive -999 Energy Consumed (kVARh) Word 10^-3 kVARhGen10E9 Total Reactive -999 Energy Generated (kVARh) Word 10^9 kVARhGen10E6 Total Reactive -999 Energy Generated...
  • Page 638 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog Monitoring 111 InAnMod1Ch00 I.Analog1.Ch00Data Value measured at UINT -32768 32767 Analog Expansion Module 1 Input 00 InAnMod1Ch01 I.Analog1.Ch01Data Value measured at UINT -32768...
  • Page 639 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor AnalogMod3Status I.Analog3.Ch00InputOpenWire Analog Expansion UINT Bit0= InCh00OpenCrcuit I.Analog3.Ch00InputOverrange Module 3 Status Bit1= InCh00OverRange I.Analog3.Ch00InputUnderrange Bit2= InCh00UnderRange I.Analog3.Ch01InputOpenWire Bit3= InCh01OpenCrcuit I.Analog3.Ch01InputOverrange Bit4= InCh01OverRange I.Analog3.Ch01InputUnderrange...
  • Page 640 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Trip/Warn History TripHistoryMaskP C.History.UnderRealPowerTripEn Trip History Mask UINT Bit0= UnderKWTrip 0xFFF (continued) C.History.OverRealPowerTripEn for Power-based Bit1= OverKWTrip C.History.UnderReactivePowerConsumedTripEn Trips Bit2= UnderKVARConTrip C.History.OverReactivePowerConsumedTripEn Bit3= OverKVARConTrip...
  • Page 641 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Trip/Warn History WarnHistoryMaskC Warning History UINT Bit0= Reserved 0x1FFF (continued) C.History.PTCWarningEn Mask for Control- Bit1= PTCWarning based Warnings Bit2= DLXWarning Bit3= Reserved Bit4= Reserved Bit5= Reserved...
  • Page 642 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Command TripReset O.TripReset Attempt to reset a BOOL 0=Ready trip 1=TripReset ConfigPreset IO Configuration USINT 0=Ready based on Logic 1=Factory Defaults Personality ClearCommand...
  • Page 643 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Device Setup TripEnableP C.Protection.UnderRealPowerTripEn Bitmask used to UINT Bit0= UnderKWTrip (continued) C.Protection.OverRealPowerTripEn enable/disable Bit1= OverKWTrip C.Protection.UnderReactivePowerConsumedTripEn power-based trips Bit2= UnderKVARConTrip C.Protection.OverReactivePowerConsumedTripEn Bit3= OverKVARConTrip C.Protection.UnderReactivePowerGeneratedTripEn...
  • Page 644 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Device Setup WarningEnableC Bitmask used to UINT Bit0= Reserved (continued) C.Protection.PTCWarningEn enable/disable Bit1= PTCWarning control-based Bit2= DLXWarning warnings Bit3= Reserved Bit4= Reserved Bit5= Reserved Bit6= Reserved...
  • Page 645 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Device Setup InPt03Assignment C.Pt03InputFunction_0 Assignment for USINT 0=Normal (continued C.Pt03InputFunction_1 Input Point 03 1=TripReset C.Pt03InputFunction_2 function 2=RemoteTrip C.Pt03InputFunction_3 3=ActivateFLA2 4=ForceSnapshot 5=EmergencyStart 6=TestMode...
  • Page 646 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Device Setup PMOperatingHours C.OperatingHoursLimit Total operating UINT 65535 (continued hours for preventative maintenance ActFLA2wOutput C.FLA2Select_0 Select FLA2 USINT 0=Disable C.FLA2Select_1 activate source 1=OutputPt00...
  • Page 647 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Options Setup OperStationType Select Operator USINT 0= IgnoreType (Continued) Station Type 1= NoStation 2= ControlStation 3= DiagStation DigitalMod1Type Select Digital I/O USINT 0= IgnoreType Expansion Module...
  • Page 648 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Current Setup GFWarningLevel C.GroundFaultWarnLimit Ground Fault UINT Amps continued Warning Level GFFilter C.GroundFaultFilterEn Filter GF current BOOL 0=Disable from %TCU 1=Enable calculation GFMaxInhibit...
  • Page 649 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Current Setup L1OCTripLevel C.L1OverCurrentTripLimit L1 Over Current USINT continued Trip Level L1OCWarningLevel C.L1OverCurrentWarnLimit L1 Over Current USINT Warning Level L2OCTripDelay L2 Over Current USINT...
  • Page 650 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Output Setup OutPt00PrFltAct C.Pt00OutputProtectionFaultMode Output Pt00 action BOOL 0= GoToPrFltValue on protection fault 1= IgnoreIfPossible OutPt00PrFltVal C.Pt00OutputProtectionFaultValue Output Pt00 value BOOL 0=Open on protection fault...
  • Page 651 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Output Setup OutDig2ComFltAct C.Digital2FaultMode Digital Expansion BOOL 0= GoToCommFltValue Continued Module 2 Outputs 1= HoldLastState action on comms fault OutDig2ComFltVal C.Digital2FaultValue Digital Expansion...
  • Page 652 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor PtDeviceOuts Status of UINT Bit0= Pt00DeviceOut DeviceLogix Bit1= Pt01DeviceOut Network Outputs. Bit2= Pt02DeviceOut Bit3= Pt03DeviceOut Bit4= Pt04DeviceOut Bit5= Pt05DeviceOut Bit6= Pt06DeviceOut Bit7= Pt07DeviceOut Bit8= Pt08DeviceOut...
  • Page 653 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Voltage Setup VIBTripDelay C.VoltageImbalanceTripDelay Voltage Imbalance USINT (continued) Trip Delay Seconds VIBTripLevel C.VoltageImbalanceTripLimit Voltage Imbalance USINT Trip Level VIBWarningLevel C.VoltageImbalanceWarnLimit Voltage Imbalance USINT...
  • Page 654 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor OVARCTripLevel C.OverReactivePowerConsumedTripLimit Over Total Reactive DINT 1000 2000000000 0 kVAR Power Consumed (+kVAR) Trip Level OVARCWarnLevel C.OverReactivePowerConsumedWarnLimit Over Total Reactive DINT 1000 2000000000 0...
  • Page 655 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor UPFLagWarnLevel C.UnderPowerFactorLaggingWarnLimit Under Total Power SINT -100 Factor Lagging (- PF) Warning Level OPFLagInhibTime C.OverPowerFactorLaggingInhibitTime Over Total Power USINT Factor Lagging (- Seconds PF) Inhibit Time...
  • Page 656 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Diagnostic Display Screen3Param1 C.Screen3ParameterSelect1 Parameter to UINT Setup (Continued) display on Operator Station Startup screen 3 line 1 Screen3Param2 C.Screen3ParameterSelect2 Parameter to UINT...
  • Page 657 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog1 Setup InAMod1C0WarnLvl C.Analog1.Ch00InputWarnLimit Level (in selected UINT 65535 (Continued) Units) where Analog Input generates a warning InAnMod1Ch01Type C.Analog1.Ch01InputRangeType_0 Assignment for USINT 0= Disabled...
  • Page 658 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor InAnMod1Ch02Type C.Analog1.Ch02InputRangeType_0 Assignment for USINT 0= Disabled C.Analog1.Ch02InputRangeType_1 Analog Module 1 1= 4To20mA C.Analog1.Ch02InputRangeType_2 Input Channel 02 2= 0To20mA C.Analog1.Ch02InputRangeType_3 function 3= 0To10Volts...
  • Page 659 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog1 Setup OutAnMod1IdlActn C.Analog1.Ch00OutputProtectionFaultMode_0 Analog Module 1 USINT 0= Zero (continued) C.Analog1.Ch00OutputProtectionFaultMode_1 Output action on 1= Maximum comms idle 2= Minimum 3= Hold Last State Analog2 Setup...
  • Page 660 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog2 Setup InAnMod2Ch01Type C.Analog2.Ch01InputRangeType_0 Assignment for USINT 0= Disabled (Continued) C.Analog2.Ch01InputRangeType_1 Analog Module 2 1= 4To20mA C.Analog2.Ch01InputRangeType_2 Input Channel 01 2= 0To20mA C.Analog2.Ch01InputRangeType_3 function...
  • Page 661 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog2 Setup InAMod2Ch2Format C.Analog2.Ch02InputFormat_0 Assignment for USINT 0= EngUnits (continued) C.Analog2.Ch02InputFormat_1 Analog Module 2 1= EngUnitsTimes10 C.Analog2.Ch02InputFormat_2 Input Channel 02 2= RawProportional Data Format 3= ScaledForPID...
  • Page 662 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog3 Setup OutAnMod2PFltAct C.Analog2.Ch00OutputProtectionFaultMode_0 Analog Module 2 USINT 0= Ignore C.Analog2.Ch00OutputProtectionFaultMode_1 Output action on a 1= Maximum protection fault 2= Minimum 3= HoldLastState InAnMod3Ch00Type...
  • Page 663 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog3 Setup InAnMod3Ch01Type C.Analog3.Ch01InputRangeType_0 Assignment for USINT 0= Disabled (Continued) C.Analog3.Ch01InputRangeType_1 Analog Module 3 1= 4To20mA C.Analog3.Ch01InputRangeType_2 Input Channel 01 2= 0To20mA C.Analog3.Ch01InputRangeType_3 function...
  • Page 664 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog3 Setup InAMod3Ch2Format C.Analog3.Ch02InputFormat_0 Assignment for USINT 0= EngUnits (continued) C.Analog3.Ch02InputFormat_1 Analog Module 3 1= EngUnitsTimes10 C.Analog3.Ch02InputFormat_2 Input Channel 02 2= RawProportional Data Format 3= ScaledForPID...
  • Page 665 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog4 Setup InAnMod4Ch00Type C.Analog4.Ch00InputRangeType_0 Assignment for USINT 0= Disabled C.Analog4.Ch00InputRangeType_1 Analog Module 4 1= 4To20mA C.Analog4.Ch00InputRangeType_2 Input Channel 00 2= 0To20mA C.Analog4.Ch00InputRangeType_3 function...
  • Page 666 Appendix B Parameter List Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog4 Setup InAMod4Ch1Format C.Analog4.Ch01InputFormat_0 Assignment for USINT 0= EngUnits (continued) C.Analog4.Ch01InputFormat_1 Analog Module 4 1= EngUnitsTimes10 C.Analog4.Ch01InputFormat_2 Input Channel 01 2= RawProportional Data Format 3= ScaledForPID...
  • Page 667 Parameter List Appendix B Param Data Size Scale Group Parameter Name Device Profile Tag Name Description Type Default Units (bytes) Factor Analog4 Setup InAMod4C2TripDly C.Analog4.Ch02InputTripDelay Analog Module 4 USINT (continued) Input Channel 02 Seconds Trip Delay InAMod4C2TripLvl C.Analog4.Ch02InputTripLimit Level (in selected UINT -32768 32767...
  • Page 668 Appendix B Parameter List Notes: Rockwell Automation Publication 193-UM015E-EN-P - November 2013...
  • Page 669: E300 Wiring Configurations

    Appendix Wiring Diagrams E300 Wiring Configurations The following pages illustrate various wiring configurations for the E300™ Electronic Overload Relay Figure 215 - Delta Configuration with Two Potential Transformers (Open Delta) Delta Source Signal Filter and Short Circuit Protection Signal Filter and...
  • Page 670 Appendix C Wiring Diagrams Figure 216 - Wye Configuration with Two Potential Transformers (Open Delta) Wye Source – Grounded or Ungrounded Neutral Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection...
  • Page 671 Wiring Diagrams Appendix C Figure 217 - Grounded B Phase Configuration With Two Potential Transformers (Open Delta) Grounded B Phase - Delta Source Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit...
  • Page 672 Appendix C Wiring Diagrams Figure 218 - Delta Configuration with Three Potential Transformers (Delta-to-Delta) Delta Source Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M 10 M 10 M...
  • Page 673 Wiring Diagrams Appendix C Figure 219 - Wye Configuration with Three Potential Transformers (Delta-to-Delta) Wye Source – Grounded or Ungrounded Neutral Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M...
  • Page 674 Appendix C Wiring Diagrams Figure 220 - Delta Configuration with Three Potential Transformers (Wye-to-Wye) Delta Source Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M 10 M 10 M...
  • Page 675 Wiring Diagrams Appendix C Figure 221 - Wye Configuration with Three Potential Transformers (Wye-to-Wye) Wye Source – Grounded or Ungrounded Neutral Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M...
  • Page 676 Appendix C Wiring Diagrams Figure 222 - Delta Configuration with Wye-to-Delta Potential Transformers Delta Source Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M 10 M 10 M Wye to Delta...
  • Page 677 Wiring Diagrams Appendix C Figure 223 - Wye Configuration with Wye-to-Delta Potential Transformers Wye Source – Grounded or Ungrounded Neutral Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M...
  • Page 678 Appendix C Wiring Diagrams Figure 224 - Delta Configuration with Delta-to-Wye Potential Transformers Delta Source Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M 10 M 10 M Delta to Wye...
  • Page 679 Wiring Diagrams Appendix C Figure 225 - Wye with Delta-to-Wye Potential Transformers Wye Source – Grounded or Ungrounded Neutral Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection Signal Filter and Short Circuit Protection 10 M...
  • Page 680 Appendix C Wiring Diagrams Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 681: Common Industrial Protocol (Cip) Objects

    Appendix EtherNet/IP Information Common Industrial Protocol The E300™ Electronic Overload Relay’s EtherNet/IP Communication Module supports the following Common Industrial Protocol (CIP). (CIP) Objects Table 587 - CIP Object Classes Class Object 0x0001 Identity 0x0002 Message Router 0x0003 DeviceNet 0x0004 Assembly...
  • Page 682: Identity Object - Class Code 0X0001

    Instance 1 of the Identity Object contains the following attributes: Table 590 - Identity Object Instance 1 Attributes Attribute ID Access Rule Name Data Type Value Vendor UINT 1 = Allen-Bradley Device Type UINT Product Code UINT Revision Structure of: Major Revision USINT...
  • Page 683 Instance 2 of the Identity Object contains the following attributes: Table 592 - Identity Object Instance 2 Attributes Attribute ID Access Rule Name Data Type Value Vendor UINT 1 = Allen-Bradley Device Type UINT Product Code UINT Revision Structure of: Major Revision USINT...
  • Page 684: Message Router - Class Code 0X0002

    Instance 3 of the Identity Object contains the following attributes: Table 593 - Identity Object Instance 3 Attributes Attribute ID Access Rule Name Data Type Value Vendor UINT 1 = Allen-Bradley Device Type UINT Product Code UINT Revision Structure of: Major Revision USINT...
  • Page 685: Instance 50

    Required ODVA Consumed Instance Produced Trip Status Required ODVA Produced Instance Config Configuration Configuration Assembly Consumed E300 Consumed Default Consumed Assembly Produced Current Diags Produced Assembly with Current Diagnostics Only Produced All Diags Default Produced Assembly Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 686 Appendix D EtherNet/IP Information Instance 2 The following table summarizes Attribute 3 Format: Table 599 - Instance 2 — Basic Overload Output Assembly from ODVA Profile Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Fault Reset Table 600 - Instance 2 Attributes...
  • Page 687: Instance 120 - Configuration Assembly Revision 2

    EtherNet/IP Information Appendix D Instance 120 - Configuration Assembly Revision 2 Table 603 shows Attribute 3 Format and Attribute 2 Member List for revision 2 of the assembly. Table 603 - Instance 120 — Configuration Assembly DINT 15 Size (bits) Param ConfigAssyRev = 2 1100 SetOperatingMode...
  • Page 688 Appendix D EtherNet/IP Information DINT 15 Size (bits) Param OperStationType DigitalMod1Type DigitalMod2Type DigitalMod3Type DigitalMod4Type AnalogMod1Type AnalogMod2Type AnalogMod3Type AnalogMod4Type Reserved Language OutAAssignment OuBAssignment OutCAssignment InPt00Assignment InPt01Assignment InPt02Assignment InPt03Assignment InPt04Assignment InPt05Assignment ActFLA2wOutput EmergencyStartEn Reserved StartsPerHour Reserved StartsInterval PMTotalStarts PMOperatingHours FeedbackTimeout TransitionDelay InterlockDelay GroundFaultType GFInhibitTime GFTripDelay...
  • Page 689 EtherNet/IP Information Appendix D DINT 15 Size (bits) Param CIInhibitTime CITripDelay CITripLevel CIWarningLevel CTPrimary CTSecondary UCInhibitTime L1UCTripDelay L1UCTripLevel L1UCWarningLevel L2UCTripDelay L2UCTripLevel L2UCWarningLevel L3UCTripDelay L3UCTripLevel L3UCWarningLevel OCInhibitTime L1OCTripDelay L1OCTripLevel L1OCWarningLevel L2OCTripDelay L2OCTripLevel L2OCWarningLevel L3OCTripDelay L3OCTripLevel L3OCWarningLevel LineLossInhTime L1LossTripDelay L2LossTripDelay L3LossTripDelay Datalink0 Datalink1 Datalink2 Datalink3...
  • Page 690 Appendix D EtherNet/IP Information DINT 15 Size (bits) Param OutPt00PrFltAct OutPt00PrFltVal OutPt00ComFltAct OutPt00ComFltVal OutPt00ComIdlAct OutPt00ComIdlVal OutPt01PrFltAct OutPt01PrFltVal OutPt01ComFltAct OutPt01ComFltVal OutPt01ComIdlAct OutPt01ComIdlVal OutPt02PrFltAct OutPt02PrFltVal OutPt02ComFltAct OutPt02ComFltVal OutPt02ComIdlAct OutPt02ComIdlVal OutDig1PrFltAct OutDig1PrFltVal OutDig1ComFltAct OutDig1ComFltVal OutDig1ComIdlAct OutDig1ComIdlVal OutDig2PrFltAct OutDig2PrFltVal OutDig2ComFltAct OutDig2ComFltVal OutDig2ComIdlAct OutDig2ComIdlVal OutDig3PrFltAct OutDig3PrFltVal OutDig3ComFltAct OutDig3ComFltVal...
  • Page 691 EtherNet/IP Information Appendix D DINT 15 Size (bits) Param VoltageMode PhRotInhibitTime UVInhibitTime UVTripDelay UVTripLevel UVWarningLevel OVInhibitTime OVTripDelay OVTripLevel OVWarningLevel VUBInhibitTime VUBTripDelay VUBTripLevel VUBWarningLevel UFInhibitTime UFTripDelay UFTripLevel UFWarningLevel OFInhibitTime OFTripDelay OFTripLevel OFWarningLevel DemandPeriod NumberOfPeriods UWInhibitTime UWTripDelay OWInhibitTime OWTripDelay UWTripLevel UWWarningLevel OWTripLevel OWWarningLevel UVARCInhibitTime UVARCTripDelay...
  • Page 692 Appendix D EtherNet/IP Information DINT 15 Size (bits) Param UVARGInhibitTime UVARGTripDelay OVARGInhibitTime OVARGTripDelay UVARGTripLevel UVARGWarnLevel OVARGTripLevel OVARGWarnLevel UVAInhibitTime UVATripDelay OVAInhibitTime OVATripDelay UVATripLevel UVAWarningLevel OVATripLevel OVAWarningLevel UPFLagInhibTime UPFLagTripDelay UPFLagTripLevel UPFLagWarnLevel OPFLagInhibTime OPFLagTripDelay OPFLagTripLevel OPFLagWarnLevel UPFLeadInhibTime UPFLeadTripDelay UPFLeadTripLevel UPFLeadWarnLevel OPFLeadInhibTime OPFLeadTripDelay OPFLeadTripDelay OPFLeadWarnLevel Screen1Param1 Screen1Param2...
  • Page 693 EtherNet/IP Information Appendix D DINT 15 Size (bits) Param InAMod1C0TripDly InAMod1C1TripDly InAMod1C2TripDly Reserved 1102 InAMod1C0TripLvl InAMod1C0WarnLvl InAMod1C1TripLvl InAMod1C1WarnLvl InAMod1C2TripLvl InAMod1C2WarnLvl InAnMod1Ch00Type InAnMod1Ch01Type InAnMod1Ch02Type Reserved 1101 OutAnMod1Select InAMod1Ch0Format InAMod1C0FiltFrq InAMod1C0OpCktSt InAMod1Ch1Format InAMod1C1FiltFrq InAMod1C1OpCktSt InAMod1Ch2Format InAMod1C2FiltFrq InAMod1C2OpCktSt InAMod1C0TmpUnit InAnMod1Ch0RTDEn InAMod1C1TmpUnit InAnMod1Ch1RTDEn InAMod1C2TmpUnit InAnMod1Ch2RTDEn OutAnMod1FltActn OutAnMod1IdlActn...
  • Page 694 Appendix D EtherNet/IP Information DINT 15 Size (bits) Param InAnMod2Ch00Type InAnMod2Ch01Type InAnMod2Ch02Type Reserved 1101 OutAnMod2Select InAMod2Ch0Format InAMod2C0FiltFrq InAMod2C0OpCktSt InAMod2Ch1Format InAMod2C1FiltFrq InAMod2C1OpCktSt InAMod2Ch2Format InAMod2C2FiltFrq InAMod2C2OpCktSt InAMod2C0TmpUnit InAnMod2Ch0RTDEn InAMod2C1TmpUnit InAnMod2Ch1RTDEn InAMod2C2TmpUnit InAnMod2Ch2RTDEn OutAnMod2FltActn OutAnMod2dlActn OutAnMod2Type Reserved 1101 InAMod3C0TripDly InAMod3C1TripDly InAMod3C2TripDly Reserved 1102 InAMod3C0TripLvl InAMod3C0WarnLvl InAMod3C1TripLvl...
  • Page 695 EtherNet/IP Information Appendix D DINT 15 Size (bits) Param InAMod3Ch1Format InAMod3C1FiltFrq InAMod3C1OpCktSt InAMod3Ch2Format InAMod3C2FiltFrq InAMod3C2OpCktSt InAMod3C0TmpUnit InAnMod3Ch0RTDEn InAMod3C1TmpUnit InAnMod3Ch1RTDEn InAMod3C2TmpUnit InAnMod3Ch2RTDEn OutAnMod3FltActn OutAnMod3dlActn OutAnMod3Type Reserved 1101 InAMod4C0TripDly InAMod4C1TripDly InAMod4C2TripDly Reserved 1102 InAMod4C0TripLvl InAMod4C0WarnLvl InAMod4C1TripLvl InAMod4C1WarnLvl InAMod4C2TripLvl InAMod4C2WarnLvl InAnMod4Ch00Type InAnMod4Ch01Type InAnMod4Ch02Type Reserved 1101 OutAnMod4Select...
  • Page 696: Instance 120 - Configuration Assembly Revision 1

    Appendix D EtherNet/IP Information Instance 120 - Configuration Assembly Revision 1 The following table shows Attribute 3 Format and Attribute 2 Member List for revision 1 of the assembly. This is a stripped down simple version of a config assembly. Table 604 - Instance 120 —...
  • Page 697 EtherNet/IP Information Appendix D DINT 15 Size (bits) Param InputStatus0 InputStatus1 OutputStatus OpStationStatus TripStsCurrent WarnStsCurrent TripStsVoltage WarnStsVoltage TripStsPower WarnStsPower TripStsControl WarnStsControl TripStsAnalog WarnStsAnalog Reserved 1103 MismatchStatus ThermUtilizedPct CurrentImbal AvgPercentFLA AverageCurrent L1Current L2Current L3Current GFCurrent Reserved 1103 Datalink1 1291 Datalink2 1292 Datalink3 1293 Datalink4...
  • Page 698: Instance 199 - All Diagnostics Produced Assembly

    Appendix D EtherNet/IP Information DINT 15 Size (bits) Param InAnMod1Ch02 Reserved 1103 InAnMod2Ch00 InAnMod2Ch01 InAnMod2Ch02 Reserved 1103 InAnMod3Ch00 InAnMod3Ch01 InAnMod3Ch02 Reserved 1103 InAnMod4Ch00 InAnMod4Ch01 InAnMod4Ch02 Reserved 1103 Instance 199 - All Diagnostics Produced Assembly Table 607 - Instance 199 - All Diagnostics Produced Assembly DINT 15 Size (bits) Param Reserved for Logix...
  • Page 699 EtherNet/IP Information Appendix D DINT 15 Size (bits) Param L3Current GFCurrent Reserved 1103 AvgVoltageLtoL L1toL2Voltage L2toL3Voltage L3toL1Voltage TotalRealPower TotalReactivePwr TotalApparentPwr TotalPowerFactor Datalink0 1291 Datalink1 1292 Datalink2 1293 Datalink3 1294 Datalink4 1295 Datalink5 1296 Datalink6 1297 Datalink7 1298 PtDeviceOuts AnDeviceOuts 1105 InAnMod1Ch00 InAnMod1Ch01 InAnMod1Ch02...
  • Page 700: Connection Object - Class Code 0X0005

    Appendix D EtherNet/IP Information Connection Object — CLASS CODE 0x0005 No class attributes are supported for the Connection Object Multiple instances of the Connection Object are supported, instances 1, 2 and 4 from the group 2 predefined master/slave connection set, and instances 5-7 are available explicit UCMM connections.
  • Page 701 EtherNet/IP Information Appendix D Instance 2 is the Predefined Group 2 Connection Set Polled IO Message Connection. The following instance 2 attributes are supported: Table 609 - Connection Object — CLASS CODE 0x0005 Instance 2 Attributes Attribute ID Access Rule Name Data Type Value 0=nonexistant...
  • Page 702 Appendix D EtherNet/IP Information Instance 4 is the Predefined Group 2 Connection Set Change of State / Cyclic I/ O Message Connection. The following instance 4 attributes are supported: Table 610 - Connection Object — CLASS CODE 0x0005 Instance 4 Attributes Attribute ID Access Rule Name Data Type Value...
  • Page 703: Discrete Input Point Object - Class Code 0X0008

    EtherNet/IP Information Appendix D Instances 5 - 7 are available group 3 explicit message connections that are allocated through the UCMM. The following attributes are supported: Table 611 - Connection Object — CLASS CODE 0x0005 Instance 5…7 Attributes Attribute ID Access Rule Name Data Type Value...
  • Page 704: Discrete Output Point Object - Class Code 0X0009

    Appendix D EtherNet/IP Information 22 instances of the Discrete Input Point Object are supported. Table 614 - Discrete Input Point Object Instances Instance Name Description InputPt00 Control Module Input 0 InputPt01 Control Module Input 1 InputPt02 Control Module Input 2 InputPt03 Control Module Input 3 InputPt04...
  • Page 705 EtherNet/IP Information Appendix D Table 617 - Discrete Output Point Object Class Attributes Attribute ID Access Rule Name Data Type Value Revision UINT Max. Instance UINT 11 instances of the Discrete Output Point Object are supported. Table 618 - Discrete Output Point Object Instances Instance Name Description...
  • Page 706: Analog Input Point Object - Class Code 0X000A

    Appendix D EtherNet/IP Information The following common services are implemented for the Discrete Output Point Object. Table 620 - Discrete Output Point Object Common Services Implemented for: Service Code Service Name Class Instance 0x0E Get_Attribute_Single 0x10 Set_Attribute_Single Analog Input Point Object — CLASS CODE 0x000A The following class attributes are supported for the Analog Input Point Object: Table 621 - Analog Input Point Object Class Attributes Attribute ID...
  • Page 707: Parameter Object - Class Code 0X000F

    EtherNet/IP Information Appendix D The following common services are implemented for the Analog Input Point Object. Table 624 - Analog Input Point Object Common Services Implemented for: Service Code Service Name Class Instance 0x0E Get_Attribute_Single 0x10 Set_Attribute_Single Parameter Object — CLASS CODE 0x000F The following class attributes are supported for the Parameter Object: Table 625 - Parameter Object Class Attributes Attribute ID...
  • Page 708: Parameter Group Object - Class Code 0X0010

    Appendix D EtherNet/IP Information The following common services are implemented for the Parameter Object. Table 627 - Parameter Object Common Services Implemented for: Service Code Service Name Class Instance 0x0E Get_Attribute_Single 0x10 Set_Attribute_Single Parameter Group Object — CLASS CODE 0x0010 The following class attributes are supported for the Parameter Object: Table 628 - Parameter Object Class Attributes Attribute ID...
  • Page 709: Control Supervisor Object - Class Code 0X0029

    EtherNet/IP Information Appendix D Table 631 - Discrete Output Group Object Instance 1 Attributes Attribute ID Access Rule Name Data Type Value Number of Instances USINT Binding Array of UINT 1,2,3,4,5,6,7,8,9,10,11 Get/Set Command BOOL 0=idle; 1=run 0=No Override (go to safe state) Network Status Get/Set BOOL...
  • Page 710: Overload Object - Class Code 0X002C

    Appendix D EtherNet/IP Information Table 634 - Control Supervisor Object Instance 1 Attributes Attribute ID Access Rule Name Data Type Value 0 = No Fault present Tripped BOOL 1 = Fault Latched 0 = No Warning present Warning BOOL 1 = Warning present (not latched) 0->1 = Trip Reset Get/Set Fault Reset...
  • Page 711 EtherNet/IP Information Appendix D Table 638 - Base Energy Object Class Attributes Attribute ID Access Rule Name Data Type Value Object Revision USINT A single instance of the Base Energy Object is supported Table 639 - Base Energy Instance Attributes Attribute ID Access Rule Name Data Type...
  • Page 712: Electrical Energy Object - Class Code 0X004F

    Appendix D EtherNet/IP Information Attribute ID Data Type Name Value REAL Energy Transfer Rate User Setting 0.0 STRUCT of UINT, Energy Type Specific Object Path Attribute 12 value Padded EPATH Energy Aggregation Path Array UINT Size Array of STRUCT of UINT, Padded Energy Aggregation Paths Null EPATH...
  • Page 713 EtherNet/IP Information Appendix D Attribute ID Access Rule Name Data Type Value Percent Voltage REAL Param 61 value converted to a REAL Unbalance L1 Real Power REAL Param 64 value converted to a REAL L2 Real Power REAL Param 65 value converted to a REAL L3 Real Power REAL Param 66 value converted to a REAL...
  • Page 714: Wall Clock Time Object - Class Code 0X008B

    Appendix D EtherNet/IP Information Attribute ID Data Type Name Value REAL L1 to N Voltage Attribute 15 Value REAL L2 to N Voltage Attribute 16 Value REAL L3 to N Voltage Attribute 17 Value REAL Avg Voltage L to N Attribute 18 Value REAL L1 to L2 Voltage...
  • Page 715: Dpi Fault Object - Class Code 0X0097

    EtherNet/IP Information Appendix D Attribute ID Access Rule Name Data Type Value Current adjusted time in human readable format. DINT[0] – year DINT[1] – month Date and Time  DINT[7] – DINT[2] – day Set / SSV (Local Time) Array of seven DINTs DINT[3] –...
  • Page 716 Appendix D EtherNet/IP Information Table 648 - DPI Fault Object Class Attributes Attribute ID Access Rule Name Data Type Value Class Revision UINT Number of Instances UINT 0=NOP; 1=Clear Fault; 2=Clear Flt Get/Set Fault Cmd Write USINT Queue The instance of the Fault Queue Entry Fault Instance Read UINT containing information about the...
  • Page 717 EtherNet/IP Information Appendix D The table below lists Fault Codes, Fault Text, and Fault Help Strings. Table 651 - Fault Codes, Fault Text, and Fault Help Strings Fault Code Fault Text Help Text No Fault No Fault Conditions Detected OverloadTrip Motor current overload condition PhaseLossTrip Phase current Loss detected in one of the motor phases...
  • Page 718 Appendix D EtherNet/IP Information Fault Code Fault Text Help Text Fault47 Fault48 TestTrip Test trip caused by holding the Test/Rest button for 2 seconds PTCTrip PTC input indicates that the motor stator windings overheated DLXTrip DeviceLogix defined trip was generated OperStationTrip The Stop button the Operator Station was pressed RemoteTrip...
  • Page 719: Dpi Warning Object - Class Code 0X0098

    EtherNet/IP Information Appendix D Fault Code Fault Text Help Text Trip97 HardwareFltTrip A hardware fault condition was detected Trip99 DPI Warning Object — CLASS CODE 0x0098 This object provides access to warning information within the device. The following class attributes are supported: Table 652 - DPI Warning Object Class Attributes Attribute ID Access Rule...
  • Page 720 Appendix D EtherNet/IP Information The following common services are implemented for the DPI Warning Object. Table 654 - DPI Warning Object Common Services Implemented for: Service Code Service Name Class Instance 0x0E Get_Attribute_Single 0x10 Set_Attribute_Single The table below lists Warning Codes, Warning Text, and Warning Help Strings. Table 655 - Warning Codes, Warning Text, and Warning Help Strings Warning Warning Text...
  • Page 721 EtherNet/IP Information Appendix D Warning Warning Text Warning Help Text Code OverKVARGenWarn Over Reactive Power Generated (-kVAR) condition detected Under Power kVA Total Apparent Power (kVA) is below warning level Over Power kVA Total Apparent Power (kVA) exceeded warning level Under PF Lagging Under Total Power Factor Lagging (-PF) condition detected Over PF Lagging...
  • Page 722: Mcc Object - Class Code 0X00C2

    Appendix D EtherNet/IP Information Warning Warning Text Warning Help Text Code AnalogMod3Warn Analog Expansion Module 3 is not operating properly AnalogMod4Warn Analog Expansion Module 4 is not operating properly Warning89 CtlModMismatch Control Module installed does not match the expected type SenseModMismatch Sensing Module installed does not match the expected type CommModMismatch...
  • Page 723: E300 Relay Accessories

    Appendix Accessories E300 Relay Accessories Table 658 lists the accessories for the E300™ Electronic Overload Relay. Table 658 - E300 Accessories Description For Use With Cat. No. 193-EIOGP-42-24D 193-CBCT1 193-CBCT2 193-EIOGP-22-120 Ground Fault Current Sensors 193-CBCT3 193-EIOGP-22-240 193-CBCT4 193-ESM-TCL-200 (Line Side)
  • Page 724 Appendix E Accessories Notes: Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 725 4 538 analog output channel 120 analog-based protection 443 analog module 1 444 analog module 2 452 analog module 3 459 analog module 4 467 offline E300 593 preconfigured E300 578 apparent power L1 518 L2 518 L3 519 total 519...
  • Page 726 Index CIP objects 681 configuration states analog input point object, class code 0x000A network start 151 output relay 96 assembly object, class code 0x0004 684 output relay communication fault mode 100 base energy object, class code 0x004E 710 output relay communication idle mode 106 connection object, class code 0x0005 700 output relay protection fault mode 97 control supervisor object, class code 0x0029...
  • Page 727 Index current-based protection 25 diagnostic station 69 current imbalance 336 display timeout 117 ground fault current 321 navigation keys 69 jam 330 parameter display 69 line loss 357 user-defined screen 1 115 line overcurrent 349 user-defined screen 2 115 line undercurrent 340 user-defined screen 3 116 overload 312 user-defined screen 4 117...
  • Page 728 E300 with AOP 578 determining network parameters 561 I/O messaging 577 ethernet/IP information 681 offline E300 with AOP 593 CIP objects 681 offline E300 with generic profile 599 expansion bus identity object fault 110 class code 0x0001 682 trip 110...
  • Page 729 Index installation 27 L1-L2 voltage 510 expansion bus I/O modules 31 trip snapshot 551 L1-N voltage 511 expansion bus network 32 expansion bus operator station 32 L2 apparent power 518 power supply 31 L2 current 507 introduction to operating modes 153 L2 percent FLA 508 invalid configuration cause 505 L2 power factor 520...
  • Page 730 Index mismatch status 505 modes operating modes 155 administration 77 introduction 153 invalid configuration 79 non-reversing starter 164 ready 78 overload 155 run 78 reversing starter 205 test 79 two-speed starter 256 modular design operating statistics, clear 482 overview 17 operating time 501 module description 21 operation...
  • Page 731 Index power-based protection 384 apparent power 406 parameter power factor 412 display 69 reactive power 393 editing 73 real power 386 group navigation 70 preventive maintenance 435 linear list navigation 71 programming system info 72 DeviceLogix 556 parameter list 631 protection parameters current based 25...
  • Page 732 Index second 504 trip snapshot 551 security configuration policy 90 L1-L2 voltage 551 L2-L3 voltage 551 security policy 88 L3-L1 voltage 552 sensing module total apparent power 553 description 21 total power factor 553 sensing module ID 499 total reactive power 552 setting IP network address 562 total real power 552 assign network parameters via BOOTP/ DHCP...
  • Page 733 Index voltage monitor 510 average L-L voltage 511 average L-N voltage 512 frequency 513 L1-L2 voltage 510 L1-N voltage 511 L2-L3 voltage 510 L2-N voltage 512 L3-L1 voltage 511 L3-N voltage 512 phase rotation 514 voltage imbalance 513 voltage trip status 490 voltage warning status 492 voltage-based protection 364 frequency 378...
  • Page 734 Index Rockwell Automation Publication 193-UM015E-EN-P - October 2015...
  • Page 736 Rockwell Automation Support Rockwell Automation provides technical information on the Web to assist you in using its products. http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com/ for software updates, support chats and forums, technical information, FAQs, and to sign up for product notification updates.

Table of Contents