Mitsubishi Electric MELFA CR750 Series Instruction Manual
Mitsubishi Electric MELFA CR750 Series Instruction Manual

Mitsubishi Electric MELFA CR750 Series Instruction Manual

Hide thumbs Also See for MELFA CR750 Series:
Table of Contents

Quick Links

Mitsubishi Industrial Robot
CR750/CR751 series controller
Robot Safety Option
Instruction Manual
4F-SF001-01
BFP-A3372-C
Table of Contents
loading

Summary of Contents for Mitsubishi Electric MELFA CR750 Series

  • Page 1 Mitsubishi Industrial Robot CR750/CR751 series controller Robot Safety Option Instruction Manual 4F-SF001-01 BFP-A3372-C...
  • Page 3 Safety Precautions Always read the following precautions and the separate "Safety Manual" before starting use of the robot to learn the required measures to be taken. CAUTION All teaching work must be carried out by an operator who has received special training.
  • Page 4 The points of the precautions given in the separate "Safety Manual" are given below. Refer to the actual "Safety Manual" for details. DANGER When automatic operation of the robot is performed using multiple control devices (GOT, programmable controller, push-button switch), the interlocking of operation rights of the devices, etc.
  • Page 5 CAUTION After editing the program, always confirm the operation with step operation before starting automatic operation. Failure to do so could lead to interference with peripheral devices because of programming mistakes, etc. CAUTION Make sure that if the safety fence entrance door is opened during automatic operation, the door is locked or that the robot will automatically stop.
  • Page 6 DANGER Attach the cap to the SSCNET III connector after disconnecting the SSCNET III cable. If the cap is not attached, dirt or dust may adhere to the connector pins, resulting in deterioration connector properties, and leading to malfunction. CAUTION Make sure there are no mistakes in the wiring.
  • Page 7 ■ Revision history Date of print Manual No. Details of revisions  First print 2015-02-06 BFP-A3372  The safety performance items in "Table 1-2 List of specifications" 2015-02-13 BFP-A3372-A was added.  The risk matters (7)(8) in "Chapter 1.5.1 residual risk (Common)" was added.
  • Page 8 ■ Introduction Thank you for purchasing an industrial robot from Mitsubishi Electric Corporation. The "robot safety option", used together with external devices such as a safety switch or light curtain, enhances the robot safety function. Before using the "robot safety option", make sure to read and fully understand the contents of this manual.
  • Page 9: Table Of Contents

    TABLE OF CONTENTS 1 Function and configuration ........................1-1 1.1 Overview ..............................1-1 1.2 System configuration ..........................1-1 1.2.1 Combination of software version ..................... 1-2 1.3 Functional block diagram ........................1-2 1.4 Specifications ............................1-3 1.5 Risk assessment ............................1-4 1.5.1 Residual risks (common) ........................
  • Page 10 4.3.1 Monitoring mode ..........................4-22 4.3.2 STO function ............................. 4-25 4.3.3 SS1 function ............................4-25 4.3.4 SLS function (Speed monitoring function) ..................4-26 4.3.5 SLP function (Position monitoring function)................. 4-32 4.3.6 STR function (Torque monitoring function) ................... 4-40 4.3.7 Duplex input monitoring function ....................4-43 5 Parameters .............................
  • Page 11 8.4.11 RH-3FH ............................8-123 8.4.12 RH-6FH ............................8-127 8.4.13 RH-12FH ............................8-131 8.4.14 RH-20FH ............................8-135 8.4.15 RH-3FHR ............................8-139 8.4.16 RH-1FHR ............................8-143...
  • Page 13: Function And Configuration

    1 Function and configuration 1 Function and configuration 1.1 Overview This manual provides descriptions on the robot safety option. For the robot arm or robot controller, refer to the corresponding manuals. Using the robot safety option extends the safety monitoring function of robots. The option can be used with safety switches, light curtains, etc.
  • Page 14: Combination Of Software Version

    1 Function and configuration 1.2.1 Combination of software version Depending on the combination of versions of Robot Controller and RT ToolBox2, features are partially modified or added in the safety monitoring function. In this document, the combination is described as shown in the following table.
  • Page 15: Specifications

    1 Function and configuration 1.4 Specifications Table 1-2 List of specifications Item Details Remarks Safety The function to electrically block the Corresponds to stop category 0 of function driving energy to the motor of the IEC 60204-1 robot arm The function to control the motor Corresponds to stop category 1 of speed of the robot to decelerate IEC 60204-1...
  • Page 16: Risk Assessment

    1 Function and configuration 1.5 Risk assessment To ensure safety, the user needs to assess all the risks and determines residual risks for the mechanical system as a whole. Companies or individuals who configure the system will accept full responsibility for installation and authorization of the safety system.
  • Page 17 1 Function and configuration (6) Duplex input monitoring function This function only monitors whether the duplexed input signals match each other, and does not detect malfunction or misconnection of the connected devices. The robot detects the mismatched signal when a signal mismatch for 0.2 seconds or more occurs.
  • Page 18: Installation

    2 Installation 2 Installation 2.1 Confirming the product Please check to see if the package has all the necessary parts before use. Table 2-1 List of items included in the package Number Item Quantity Outer appearance Model name Extended safety unit U770B068G001 Connector for wiring U770D007G51...
  • Page 19: Connecting With The Robot Controller

    2 Installation 2.2.2 Connecting with the robot controller Connect the cable connector installed to the extended safety unit to CNUSR2 of the robot controller. Be careful in inserting the connector to the CR751 controller because CNUSR1 and CAUTION CNUSR2 have the same shape. Inserting an incorrect connector may lead to malfunction of the controller.
  • Page 20: Connecting Cables To The Wiring Connector

    2 Installation 2.2.3 Connecting cables to the wiring connector Misconnection of the cables to the wiring connector may lead to malfunction or abnormal CAUTION behavior of the robot. Be careful in connecting the cables to the wiring connector. The following shows how to connect cables to the wiring connector. Use the cable of AWG#26 to 16 (0.15 to 1.5 ).
  • Page 21: Connecting The Wiring Connector To The Extended Safety Unit

    2 Installation (4) Tighten the screw. Tightening torque: 0.22 to 0.25 Nm 2.2.4 Connecting the wiring connector to the extended safety unit Insert the wiring connector to CNUSR21 or CNUSR22 of the extended safety unit. Tighten and fix securely two connector fixing screws mounted on the both sides of the connector using the tool used in wiring operation.
  • Page 22: Long Life Parts

    2 Installation 2.4 Long life parts The robot safety option does not have any long life parts. 2.5 Maintenance In case of malfunction of the extended safety unit, the extended safety unit needs to be replaced. Please contact your service provider. 2-10 Long life parts...
  • Page 23: Signals And Wiring

    3 Signals and wiring 3 Signals and wiring 3.1 Description of signals 3.1.1 Electrical specifications This manual only explains signals specific to the robot safety option. Please refer to the robot specifications for the electrical specifications of the signals not explained in this manual. Fig.
  • Page 24: Signal Operation

    3 Signals and wiring 3.1.2 Signal operation DSI1/DSI2 signals are used to switch monitoring contents of the safety monitoring function. Each of the signals is duplex and the state of two input signals need to match. If the state of two input signals does not match, an error occurs.
  • Page 25: Connectors And Signal Assignment

    3 Signals and wiring 3.2 Connectors and signal assignment Fig. 3-5 Signal assignment of CNUSR21 Pin No. Signal name Function Remarks The function is the standard AXMC11 Additional axis contactor control output function of the robot. AXMC12 Additional axis contactor control output For details, refer to LAH2 Differential encoder A phase signal + side CH2...
  • Page 26: Input Signal Connection Example

    3 Signals and wiring 3.3 Input signal connection example Fig. 3-1 shows a signal connection example. Devices to be connected depend on the user's system configuration. CNUSR21 Additional Power source axis CNUSR22 synchronizing with the system additional axis servo amplifier CNUSR21 Encoder CNUSR22...
  • Page 27: Measures Against Static Electricity / Noise

    3 Signals and wiring 3.4 Measures against static electricity / noise Use a shielded wire to avoid influence of noise. Perform wiring through the shortest path so that the cable length can become shorter. In case of malfunction, etc. due to static electricity or noise, ground the extended safety unit using the terminal for grounding shown in the dimensional outline drawing *2 (Fig.
  • Page 28: Safety Monitoring Function

    4 Safety monitoring function 4 Safety monitoring function 4.1 Safety monitoring function overview The following functions are available on the robot safety option. (1) STO function(Safe torque off) The function electrically blocks the driving energy to the motor of a robot arm. (2) SS1 function(Safe stop 1) The function controls and decelerates the motor speed of a robot.
  • Page 29 4 Safety monitoring function (1) Factory default password The factory default password is "MELFASafetyPSWD". Unless the password is changed, error L7378 (Change password) occurs when a parameter change is attempted for a parameter related to the safety monitoring function, and the parameter cannot be changed. (2) Password change The password is changed on the RT ToolBox2 editing screen for parameters related to the safety monitoring function.
  • Page 30 4 Safety monitoring function Use 8 to 32 single-byte characters for the password. Available characters are alphanumeric characters (0 to 9, A to Z, and a to z), and they are case-sensitive. If you forget the password, parameters related to the safety monitoring function cannot CAUTION be changed.
  • Page 31: Enable/Disable

    4 Safety monitoring function 4.2.3 Enable/disable The safety monitoring function is disabled in the factory default setting. To use the safety monitoring function, change the setting of the target parameter to "Enable" on the RT ToolBox2 editing screen for parameters related to the safety monitoring function.
  • Page 32 4 Safety monitoring function Speed monitoring setting(*) Position monitoring (position) setting (*) These samples show the images in the case of “Version Combination B” for the robot controller and RT ToolBox2. Torque width monitoring setting Fig. 4-1 Parameter editing screen for the parameters related to the safety monitoring function The setting of the parameters displayed on the editing screen for parameters related to CAUTION the safety monitoring function can be confirmed or changed only through this screen.
  • Page 33: Test Operation

    4 Safety monitoring function 4.2.5 Test operation (1) Debugging operation Perform the debugging operation (step feed, etc.) to confirm if the created program operates correctly. (For the debugging operation, refer to the separate "Instruction manual/Detailed explanations of functions and operations" supplied with the robot arm.) The safety monitoring function is effective during the debugging operation too.
  • Page 34: Safety Monitoring Function

    4 Safety monitoring function 4.3 Safety monitoring function 4.3.1 Monitoring mode (1) Overview The monitoring mode defines the details of monitoring for the safety monitoring function (SLS/SLP/STR). Specify the mode using the controller mode and the DSI signals. (2) Specifying the monitoring mode The monitoring mode is specified by a state of the controller mode (AUTOMATIC/MANUAL) and ON/OFF of the DSI signals.
  • Page 35 4 Safety monitoring function (3) Switching the monitoring content by the monitoring mode The monitoring content of SLS function/SLP function/STR function is switched according to the monitoring mode as shown below. Table 4-2 Correspondence of the monitoring mode to the contents of monitoring SLS function Monitoring mode SLP function...
  • Page 36 4 Safety monitoring function (b) Dedicated output signal The state of the monitoring mode can be output to the dedicated output signal SFMODE. The following table shows the correspondence of the output signal value to the state of the monitoring mode. Safety monitoring Value of dedicated Monitoring mode...
  • Page 37: Sto Function

    4 Safety monitoring function 4.3.2 STO function (1) Overview Emergency stop input electrically blocks the driving energy to the motor. (2) Sequence overview STO function is activated by the emergency stop input. When the robot is moving, STO function starts after deceleration by SS1 function.
  • Page 38: Sls Function (Speed Monitoring Function)

    4 Safety monitoring function 4.3.4 SLS function (Speed monitoring function) The behavior of SLS function depends on the version combination, “Version Combination A” or “Version Combination B” for the software version on the controller and RT ToolBox2. Table 4-1 Differences in the SLS function dependent on the version combination Item Version Combination A Version Combination B...
  • Page 39 4 Safety monitoring function If the reaction time is changed by the parameter SFREACT, the time required for the CAUTION deceleration of the robot when the monitoring mode is switched does not change. Therefore, if the reaction time is shorter, an error may occur because the deceleration of the robot is not completed when the monitoring speed is switched depending on the operation.
  • Page 40 4 Safety monitoring function (4) Speed monitoring (a) Monitoring the speed command / speed feedback The function monitors the speed command / speed feedback to see if it does not exceed the monitoring speed during the speed monitoring. If the function detects the speed command or speed feedback exceeds the monitoring speed, error H2300 (detected by the speed feedback) or H2310 (detected by the speed command) occurs and the robot turns the servo OFF to stop.
  • Page 41 4 Safety monitoring function 4.3.4.2 SLS function in the “Version Combination B” (1) Selection of speed monitoring method Even if the software version combination of the controller and RT ToolBox2 corresponds to the “Version Combination B”, by setting the parameter SLSCOMP, the SLS function equivalent to the “Version Combination A”...
  • Page 42 4 Safety monitoring function Speed limit override is set to the parameter SLSLMTOV. Parameters for setting the speed limit Monitoring mode OVRD Mode 1 The first element in SLSLMTOV Mode 2 The second element in SLSLMTOV Mode 3 The third element in SLSLMTOV In addition, please note that the following condition must be satisfied for speed limit OVRD settings in mode 1, mode 2 and mode 3.
  • Page 43 4 Safety monitoring function (5) Speed Monitoring (a) Monitoring speed command/speed feedback During speed monitoring, this function monitors to see if the speed command/speed feedback does not exceed the monitoring speed. If the function detects the speed command or speed feedback exceeding the monitoring speed, error H2300 (detected by the speed feedback) or H2310 (detected by the speed command) occurs and the robot turns the servo OFF to stop.
  • Page 44: Slp Function (Position Monitoring Function)

    4 Safety monitoring function 4.3.5 SLP function (Position monitoring function) (1) Overview The function defines a plane (position monitoring plane) around the robot to restrict intrusion, and monitors the monitoring positions set for the robot do not exceed the plane. When a monitoring position approaches the position monitoring plane during the operation, the robot stops its operation.
  • Page 45 4 Safety monitoring function (b) Parameter SLPmAT (m = 1 to 8) Specify whether the position monitoring plane is enabled (ON) or disabled (OFF). Specification Description Not used for position monitoring. ON (Inside) Used for position monitoring. Using the relevant plane as a reference, the operable area of the robot is on the side where the origin of the base coordinates exists.
  • Page 46 4 Safety monitoring function (a) Monitoring positions on the robot arm The center of the sphere for the monitoring positions on the robot arm is specified depending on the robot type as follows. RV-F series RH-F series Monitoring position 1: Monitoring position 1: J3 axis rotation center position J2 axis rotation center position...
  • Page 47 4 Safety monitoring function (4) 3D monitor display The position monitoring planes and the monitoring positions can be displayed on the 3D monitor of RT ToolBox2. This enables you to monitor the position monitoring planes / monitoring positions. To display the planes/positions on the 3D monitor, select the item(s) to be displayed in [Safe pos. monitoring] on the [Robot display option] screen.
  • Page 48 4 Safety monitoring function (5) Starting the SLP function The SLP function is constantly being executed. The planes subject to the position monitoring are switched based on the current state of the monitoring mode and the setting of each monitoring plane (enable/disable and applicable monitoring mode).
  • Page 49 4 Safety monitoring function (6) Position monitoring During the position monitoring, the function monitors four monitoring positions to see if they do not exceed the position monitoring plane applied at that time. If a monitoring position approaches the position monitoring plane during the operation performed by the interpolation command or for the jog operation, the robot stops its operation (SLP pre-stop status).
  • Page 50 4 Safety monitoring function (7) How to confirm the SLP pre-stop status When the robot is stopped during the automatic operation, confirm whether the operation is in the SLP pre-stop status as followings. (a) Operation panel in the front of the controller When the operation is in the SLP pre-stop status, the start button LED lamp on the operation panel blinks.
  • Page 51 4 Safety monitoring function (8) Restoration after the position monitoring plane is exceeded When the robot is stopped beyond the position monitoring plane, the robot cannot be moved because the error cannot be reset. In such a case, disable or change the mode of the applicable monitoring plane to exclude from the application, and reset the error and retract the robot.
  • Page 52: Str Function (Torque Monitoring Function)

    4 Safety monitoring function 4.3.6 STR function (Torque monitoring function) (1) Overview The function calculates a presumed torque based on the robot movement, defines an allowable torque width around the presumed torque, and monitors whether the actual torque (torque feedback) is within the allowable width.
  • Page 53 4 Safety monitoring function width monitoring is started with the allowable torque width for Mode 2. After that, when the DSI2 signal is turned OFF and the mode is switched to Mode 3, the allowable width is switched to the allowable torque width for Mode 3 and the torque width monitoring is continued.
  • Page 54 4 Safety monitoring function When the robot servo is turned OFF, the allowable torque width monitoring is not CAUTION executed even if the monitoring mode is Mode 2, Mode 3, or Mode M. For calculating the presumed torque, the hand/workpiece condition (parameter CAUTION HNDDATn and WRKDATn (n=0 to 8)) settings are referenced.
  • Page 55: Duplex Input Monitoring Function

    4 Safety monitoring function 4.3.7 Duplex input monitoring function (1) Overview The DSI signals specifying the monitoring mode status are duplex input signals, and the function always monitors consistency of the status. When the function detects that the input signals do not match, error H222m (m = 1 or 2: DSI signal number) occurs and the robot turns the servo OFF to stop.
  • Page 56: Parameters

    5 Parameters 5 Parameters 5.1 Safety monitoring function parameters 5.1.1 Parameter List To allow parameter changes to take effect, turn OFF the controller power supply once, and turn it ON again. Table 5-1 Parameters related to the safety monitoring function Setting screen Parameter Parameter name...
  • Page 57: Parameter Details

    5 Parameters 5.1.2 Parameter details The following describes the parameters in each of the safety monitoring function parameter setting screens of RT ToolBox2. (1) Enable/disable setting screen “CRC of parameter file output” is shown when the software version combination of controller and RT ※...
  • Page 58 5 Parameters Parameter Parameter Description Factory default setting name SFPFCSIG CRC of parameter file output Start address and end address of the dedicated signal for the Start:-1 ( valid only in the “Version output of CRC of parameter file for the Safety Monitoring End:-1 Function is specified.
  • Page 59 5 Parameters (2) Position monitoring (plane) setting screen * When the plane for which "Attribute" is ON (enabled) is selected in the "Display planes" section, it is displayed in the graphics display section and its positional relationship with the robot can be checked. Note that the graphics display section is not linked with the 3D monitor.
  • Page 60 5 Parameters Parameter Parameter Description Factory default setting name SLPmAT Attribute of position Specify whether the set position monitoring plane is ON Disabled (m = 1 to 8) monitoring plane (enabled) or OFF (disabled). Description Specification Not used for position monitoring. Used for position monitoring.
  • Page 61 5 Parameters (3) Position monitoring (position) setting screen * When a checkbox in the "Display monitoring positions" section is selected, a sphere indicating the monitoring position is displayed in the graphics display section, and its positional relationship with the robot and the sphere size can be checked.
  • Page 62 5 Parameters (4) Speed monitoring setting screen ※ Above figure shows the image in the case software version combination of controller and RT ToolBox2 corresponds to the “Version Combination B”. The image for “Version Combination A” is shown in the figure below. 5-50 Safety monitoring function parameters...
  • Page 63 5 Parameters Table 5-5 Safety monitoring function parameters in the speed monitoring setting screen Parameter Parameter Description Factory default setting name SLSMONSP Monitoring speed In each mode of mode1, mode2, mode3, the monitoring speed Mode 1: 100000.0 (Valid only in the “Version applied for each monitoring mode is specified.
  • Page 64 5 Parameters (5) Torque width monitoring setting screen Table 5-6 Safety monitoring function parameters in the torque width monitoring setting screen Parameter Parameter Description Factory default setting name STRTRQM Allowable torque width applied Specify the allowable torque width applied in the corresponding 300 for all axes when the monitoring mode is monitoring mode for each joint axis.
  • Page 65 5 Parameters (6) Dedicated output signals No dedicated parameter setting screen is available for the dedicated output signals SFMODE and SLPPRSTP. Enter the parameter name on the parameter list screen of RT ToolBox2 or the parameter editing screen of the teaching pendant to confirm or change the parameter setting.
  • Page 66: Crc Output Of The Parameter File

    5 Parameters 5.1.3 CRC output of the parameter file (1) Overview The CRC value of the parameter file in which the parameters for Safety Monitoring Function are stored can be calculated, and the value can be output externally by the dedicated output signal. The peripheral instruments can detect the modification of parameters for Safety Monitoring Function by monitoring this signal.
  • Page 67: Troubleshooting

    6 Troubleshooting 6 Troubleshooting 6.1 List of errors related to the safety monitoring function The table below shows the list of errors related to the safety monitoring function. For details about errors not mentioned in the list, refer to the separate "Instruction manual/ Troubleshooting" supplied with the robot arm.
  • Page 68 6 Troubleshooting Error Causes of the error and its countermeasures number Countermeasure The monitoring position calculated based on the robot feedback position exceeds the operable area limit defined by the plane of the position monitoring function. Check the relevant parameter setting such as details of the robot movement or the definition of the plane.
  • Page 69 6 Troubleshooting Error Causes of the error and its countermeasures number Countermeasure The monitoring mode status of the functional safety is inconsistent between the main CPU and the servo CPU. After turning OFF the power, turn ON the power again to reset the error. If the same error recurs, contact the manufacturer.
  • Page 70: Errors Involving Change In Specification

    6 Troubleshooting 6.2 Errors involving change in specification The specification of the following errors changes when the safety monitoring function is enabled. (1) To reset the following errors while the safety monitoring function is enabled, reset the power supply. Error number Error message H0039 Door switch open signal wiring fault...
  • Page 71: Dimensional Outline Drawings

    7 Dimensional outline drawings 7 Dimensional outline drawings 7.1 Dimensional outline of the extended safety unit Fig. 7-1 Dimensional outline drawings Dimensional outline of the extended safety unit 7-59...
  • Page 72: Maximum Elapsed Time/Maximum Motion Angle

    8 Maximum elapsed time/maximum motion angle 8 Maximum elapsed time/maximum motion angle 8.1 Overview The values in this chapter shows the elapsed time and motion angle until the power supply to the motor is blocked after SS1 function is activated. When the motion speed is lower, as the time needed for deceleration gets shorter, the processing is executed in shorter elapsed time and in less motion angle than the values shown in this chapter.
  • Page 73: Robot Arm Extention Rate

    8 Maximum elapsed time/maximum motion angle 8.3 Robot arm extention rate 8.3.1 RV-F series Axis L=100% L=66% L=33% J3 axis J2 axis J1 axis L=100% L=66% L=33% J2 axis J3 axis J1 axis L=66% L=33% J3 axis J2 axis J1 axis L=100% Note: The robot model in the figure is RV-4F.
  • Page 74: Rh-Fh Series

    8 Maximum elapsed time/maximum motion angle 8.3.2 RH-FH series Axis L=100% L=66% L=33% J3 axis J2 axis J1 axis L=100% L=66% L=33% J3 axis J2 axis J1 axis L=100% 8-62 Robot arm extention rate...
  • Page 75: Stopping Time/Stopping Angle

    8 Maximum elapsed time/maximum motion angle 8.4 Stopping time/stopping angle 8.4.1 RV-2F (1) Stopping time of J1 axis RV-2F J1 axis L=100% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66% 0.15 0.10 M=33% 0.05 0.00 OVRD [%] RV-2F J1 axis L=66% 0.45 0.40 0.35...
  • Page 76 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-2F J2 axis L=100% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] RV-2F J2 axis L=66% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] RV-2F J2 axis L=33% 0.50...
  • Page 77 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-2F J3 axis L=100% 0.40 0.35 0.30 0.25 M=100% 0.20 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-65...
  • Page 78 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-2F J1 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-2F J1 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 79 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-2F J2 axis L=100% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RV-2F J2 axis L=66% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00...
  • Page 80 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-2F J3 axis L=100% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] 8-68 Stopping time/stopping angle...
  • Page 81: Rv-4F

    8 Maximum elapsed time/maximum motion angle 8.4.2 RV-4F (1) Stopping time of J1 axis RV-4F J1 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-4F J1 axis L=66% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10...
  • Page 82 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-4F J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-4F J2 axis L=66% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%]...
  • Page 83 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-4F J3 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-71...
  • Page 84 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-4F J1 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-4F J1 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 85 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-4F J2 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-4F J2 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 86 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-4F J3 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] 8-74 Stopping time/stopping angle...
  • Page 87: Rv-4Fl

    8 Maximum elapsed time/maximum motion angle 8.4.3 RV-4FL (1) Stopping time of J1 axis RV-4FL J1 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-4FL J1 axis L=66% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10...
  • Page 88 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-4FL J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-4FL J2 axis L=66% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%]...
  • Page 89 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-4FL J3 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-77...
  • Page 90 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-4FL J1 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-4FL J1 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 91 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-4FL J2 axis L=100% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-4FL J2 axis L=66% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-4FL J2 axis L=33% 50.00...
  • Page 92 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-4FL J3 axis L=100% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] 8-80 Stopping time/stopping angle...
  • Page 93: Rv-4Fjl

    8 Maximum elapsed time/maximum motion angle 8.4.4 RV-4FJL (1) Stopping time of J1 axis RV-4FJL J1 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-4FJL J1 axis L=66% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10...
  • Page 94 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-4FJL J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-4FJL J2 axis L=66% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%]...
  • Page 95 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-4FJL J3 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-83...
  • Page 96 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-4FJL J1 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-4FJL J1 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 97 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-4FJL J2 axis L=100% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-4FJL J2 axis L=66% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-4FJL J2 axis L=33% 50.00...
  • Page 98 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-4FJL J3 axis L=100% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] 8-86 Stopping time/stopping angle...
  • Page 99: Rv-7F

    8 Maximum elapsed time/maximum motion angle 8.4.5 RV-7F (1) Stopping time of J1 axis RV-7F J1 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-7F J1 axis L=66% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10...
  • Page 100 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-7F J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-7F J2 axis L=66% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%]...
  • Page 101 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-7F J3 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-89...
  • Page 102 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-7F J1 axis L=100% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-7F J1 axis L=66% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%]...
  • Page 103 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-7F J2 axis L=100% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-7F J2 axis L=66% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%]...
  • Page 104 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-7F J3 axis L=100% 80.00 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] 8-92 Stopping time/stopping angle...
  • Page 105: Rv-7Fl

    8 Maximum elapsed time/maximum motion angle 8.4.6 RV-7FL (1) Stopping time of J1 axis RV-7FL J1 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-7FL J1 axis L=66% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10...
  • Page 106 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-7FL J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-7FL J2 axis L=66% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%]...
  • Page 107 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-7FL J3 axis L=100% 0.40 0.35 0.30 0.25 M=100% 0.20 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-95...
  • Page 108 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-7FL J1 axis L=100% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-7FL J1 axis L=66% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-7FL J1 axis L=33% 50.00...
  • Page 109 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-7FL J2 axis L=100% 45.00 40.00 35.00 30.00 25.00 M=100% 20.00 M=66% 15.00 10.00 M=33% 5.00 0.00 OVRD [%] RV-7FL J2 axis L=66% 45.00 40.00 35.00 30.00 25.00 M=100% 20.00 M=66%...
  • Page 110 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-7FL J3 axis L=100% 45.00 40.00 35.00 30.00 25.00 M=100% 20.00 M=66% 15.00 10.00 M=33% 5.00 0.00 OVRD [%] 8-98 Stopping time/stopping angle...
  • Page 111: Rv-7Fll

    8 Maximum elapsed time/maximum motion angle 8.4.7 RV-7FLL (1) Stopping time of J1 axis RV-7FLL J1 axis L=100% 0.60 0.50 0.40 M=100% 0.30 M=66% 0.20 M=33% 0.10 0.00 OVRD [%] RV-7FLL J1 axis L=66% 0.60 0.50 0.40 0.30 M=100% M=66% 0.20 M=33% 0.10...
  • Page 112 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-7FLL J2 axis L=100% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] RV-7FLL J2 axis L=66% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] RV-7FLL J2 axis L=33% 0.50...
  • Page 113 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-7FLL J3 axis L=100% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] Stopping time/stopping angle 8-101...
  • Page 114 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-7FLL J1 axis L=100% 90.00 80.00 70.00 60.00 50.00 M=100% 40.00 M=66% 30.00 20.00 M=33% 10.00 0.00 OVRD [%] RV-7FLL J1 axis L=66% 90.00 80.00 70.00 60.00 50.00 M=100% 40.00 M=66%...
  • Page 115 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-7FLL J2 axis L=100% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RV-7FLL J2 axis L=66% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00...
  • Page 116 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-7FLL J3 axis L=100% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] 8-104 Stopping time/stopping angle...
  • Page 117: Rv-13F

    8 Maximum elapsed time/maximum motion angle 8.4.8 RV-13F (1) Stopping time of J1 axis RV-13F J1 axis L=100% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66% 0.15 0.10 M=33% 0.05 0.00 OVRD [%] RV-13F J1 axis L=66% 0.45 0.40 0.35 0.30 0.25 M=100%...
  • Page 118 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-13F J2 axis L=100% 0.40 0.35 0.30 0.25 M=100% 0.20 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RV-13F J2 axis L=66% 0.40 0.35 0.30 0.25 M=100% 0.20 0.15 M=66% 0.10...
  • Page 119 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-13F J3 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-107...
  • Page 120 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-13F J1 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RV-13F J1 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 121 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-13F J2 axis L=100% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-13F J2 axis L=66% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-13F J2 axis L=33% 50.00...
  • Page 122 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-13F J3 axis L=100% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] 8-110 Stopping time/stopping angle...
  • Page 123: Rv-13Fl

    8 Maximum elapsed time/maximum motion angle 8.4.9 RV-13FL (1) Stopping time of J1 axis RV-13FL J1 axis L=100% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66% 0.15 0.10 M=33% 0.05 0.00 OVRD [%] RV-13FL J1 axis L=66% 0.45 0.40 0.35 0.30 0.25 M=100%...
  • Page 124 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-13FL J2 axis L=100% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66% 0.15 0.10 M=33% 0.05 0.00 OVRD [%] RV-13FL J2 axis L=66% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66%...
  • Page 125 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-13FL J3 axis L=100% 0.40 0.35 0.30 0.25 M=100% 0.20 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] Stopping time/stopping angle 8-113...
  • Page 126 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-13FL J1 axis L=100% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-13FL J1 axis L=66% 50.00 40.00 30.00 M=100% 20.00 M=66% 10.00 M=33% 0.00 OVRD [%] RV-13FL J1 axis L=33% 50.00...
  • Page 127 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-13FL J2 axis L=100% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RV-13FL J2 axis L=66% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00...
  • Page 128 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-13FL J3 axis L=100% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] 8-116 Stopping time/stopping angle...
  • Page 129: Rv-20F

    8 Maximum elapsed time/maximum motion angle 8.4.10 RV-20F (1) Stopping time of J1 axis RV-20F J1 axis L=100% 0.60 0.50 0.40 M=100% 0.30 M=66% 0.20 M=33% 0.10 0.00 OVRD [%] RV-20F J1 axis L=66% 0.60 0.50 0.40 M=100% 0.30 M=66% 0.20 M=33% 0.10...
  • Page 130 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RV-20F J2 axis L=100% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] RV-20F J2 axis L=66% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] RV-20F J2 axis L=33% 0.50...
  • Page 131 8 Maximum elapsed time/maximum motion angle (3) Stopping time of J3 axis RV-20F J3 axis L=100% 0.50 0.40 0.30 M=100% 0.20 M=66% 0.10 M=33% 0.00 OVRD [%] Stopping time/stopping angle 8-119...
  • Page 132 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RV-20F J1 axis L=100% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RV-20F J1 axis L=66% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00...
  • Page 133 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RV-20F J2 axis L=100% 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RV-20F J2 axis L=66% 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%]...
  • Page 134 8 Maximum elapsed time/maximum motion angle (6) Stopping angle of J3 axis RV-20F J3 axis L=100% 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] 8-122 Stopping time/stopping angle...
  • Page 135: Rh-3Fh

    8 Maximum elapsed time/maximum motion angle 8.4.11 RH-3FH (1) Stopping time of J1 axis RH-3FH J1 axis L=100% 0.20 0.18 0.16 0.14 0.12 0.10 M=100% 0.08 M=66% 0.06 M=33% 0.04 0.02 0.00 OVRD [%] RH-3FH J1 axis L=66% 0.20 0.15 M=100% 0.10 M=66%...
  • Page 136 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RH-3FH J2 axis L=100% 0.16 0.14 0.12 0.10 M=100% 0.08 0.06 M=66% 0.04 M=33% 0.02 0.00 OVRD [%] (3) Stopping time of J3 axis RH-3FH J3 axis 0.16 0.14 0.12 0.10...
  • Page 137 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RH-3FH J1 axis L=100% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RH-3FH J1 axis L=66% 40.00 35.00 30.00 25.00 M=100% 20.00 15.00 M=66% 10.00...
  • Page 138 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RH-3FH J2 axis L=100% 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] (6) Stopping distance of J3 axis RH-3FH J3 axis 90.00 80.00 70.00 60.00 50.00 M=100%...
  • Page 139: Rh-6Fh

    8 Maximum elapsed time/maximum motion angle 8.4.12 RH-6FH (1) Stopping time of J1 axis RH-6FH J1 axis L=100% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66% 0.15 0.10 M=33% 0.05 0.00 OVRD [%] RH-6FH J1 axis L=66% 0.45 0.40 0.35 0.30 0.25 M=100%...
  • Page 140 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RH-6FH J2 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] (3) Stopping time of J3 axis RH-6FH J3 axis 0.25 0.20 0.15 M=100% 0.10...
  • Page 141 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RH-6FH J1 axis L=100% 90.00 80.00 70.00 60.00 50.00 M=100% 40.00 M=66% 30.00 M=33% 20.00 10.00 0.00 OVRD [%] RH-6FH J1 axis L=66% 90.00 80.00 70.00 60.00 50.00 M=100% 40.00 M=66%...
  • Page 142 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RH-6FH J2 axis L=100% 120.00 100.00 80.00 60.00 M=100% M=66% 40.00 M=33% 20.00 0.00 OVRD [%] (6) Stopping distance of J3 axis RH-6FH J3 axis 300.00 250.00 200.00 M=100% 150.00 M=66%...
  • Page 143: Rh-12Fh

    8 Maximum elapsed time/maximum motion angle 8.4.13 RH-12FH (1) Stopping time of J1 axis RH-12FH J1 axis L=100% 0.20 0.18 0.16 0.14 0.12 M=100% 0.10 0.08 M=66% 0.06 M=33% 0.04 0.02 0.00 OVRD [%] RH-12FH J1 axis L=66% 0.20 0.18 0.16 0.14 0.12...
  • Page 144 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RH-12FH J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] (3) Stopping time of J3 axis RH-12FH J3 axis 0.16 0.14 0.12 0.10 M=100% 0.08...
  • Page 145 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RH-12FH J1 axis L=100% 40.00 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RH-12FH J1 axis L=66% 40.00 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00...
  • Page 146 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RH-12FH J2 axis L=100% 60.00 50.00 40.00 30.00 M=100% M=66% 20.00 M=33% 10.00 0.00 OVRD [%] (6) Stopping distance of J3 axis RH-12FH J3 axis 200.00 180.00 160.00 140.00 120.00 M=100%...
  • Page 147: Rh-20Fh

    8 Maximum elapsed time/maximum motion angle 8.4.14 RH-20FH (1) Stopping time of J1 axis RH-20FH J1 axis L=100% 0.50 0.45 0.40 0.35 0.30 M=100% 0.25 0.20 M=66% 0.15 M=33% 0.10 0.05 0.00 OVRD [%] RH-20FH J1 axis L=66% 0.50 0.45 0.40 0.35 0.30...
  • Page 148 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RH-20FH J2 axis L=100% 0.45 0.40 0.35 0.30 0.25 M=100% 0.20 M=66% 0.15 M=33% 0.10 0.05 0.00 OVRD [%] (3) Stopping time of J3 axis RH-20FH J3 axis 0.20 0.18 0.16...
  • Page 149 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RH-20FH J1 axis L=100% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00 0.00 OVRD [%] RH-20FH J1 axis L=66% 70.00 60.00 50.00 40.00 M=100% 30.00 M=66% 20.00 M=33% 10.00...
  • Page 150 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RH-20FH J2 axis L=100% 90.00 80.00 70.00 60.00 50.00 M=100% 40.00 M=66% 30.00 M=33% 20.00 10.00 0.00 OVRD [%] (6) Stopping distance of J3 axis RH-20FH J3 axis 250.00 200.00 150.00...
  • Page 151: Rh-3Fhr

    8 Maximum elapsed time/maximum motion angle 8.4.15 RH-3FHR (1) Stopping time of J1 axis RH-3FHR J1 axis L=100% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] RH-3FHR J1 axis L=66% 0.35 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10...
  • Page 152 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RH-3FHR J2 axis L=100% 0.30 0.25 0.20 M=100% 0.15 M=66% 0.10 M=33% 0.05 0.00 OVRD [%] (3) Stopping time of J3 axis RH-3FHR J3 axis 0.25 0.20 0.15 M=100% 0.10 M=66%...
  • Page 153 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RH-3FHR J1 axis L=100% 120.00 100.00 80.00 M=100% 60.00 M=66% 40.00 M=33% 20.00 0.00 OVRD [%] RH-3FHR J1 axis L=66% 120.00 100.00 80.00 60.00 M=100% M=66% 40.00 M=33% 20.00 0.00 OVRD [%]...
  • Page 154 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RH-3FHR J2 axis L=100% 120.00 100.00 80.00 60.00 M=100% M=66% 40.00 M=33% 20.00 0.00 OVRD [%] (6) Stopping distance of J3 axis RH-3FHR Axis J3 140.00 120.00 100.00 80.00 M=100% 60.00...
  • Page 155: Rh-1Fhr

    8 Maximum elapsed time/maximum motion angle 8.4.16 RH-1FHR (1) Stopping time of J1 axis RH-1FHR J1 axis L=100% 0.25 0.20 0.15 M=100% 0.10 M=66% M=33% 0.05 0.00 OVRD [%] RH-1FHR J1 axis L=66% 0.25 0.20 0.15 M=100% 0.10 M=66% M=33% 0.05 0.00 OVRD [%]...
  • Page 156 8 Maximum elapsed time/maximum motion angle (2) Stopping time of J2 axis RH-1FHR J2 axis L=100% 0.25 0.20 0.15 M=100% 0.10 M=66% M=33% 0.05 0.00 OVRD [%] (3) Stopping time of J3 axis RH-1FHR J3 axis 0.14 0.12 0.10 0.08 M=100% 0.06 M=66%...
  • Page 157 8 Maximum elapsed time/maximum motion angle (4) Stopping angle of J1 axis RH-1FHR J1 axis L=100% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00 0.00 OVRD [%] RH-1FHR J1 axis L=66% 35.00 30.00 25.00 20.00 M=100% 15.00 M=66% 10.00 M=33% 5.00...
  • Page 158 8 Maximum elapsed time/maximum motion angle (5) Stopping angle of J2 axis RH-1FHR J2 axis L=100% 90.00 80.00 70.00 60.00 50.00 M=100% 40.00 M=66% 30.00 M=33% 20.00 10.00 0.00 OVRD [%] (6) Stopping distance of J3 axis RH-1FHR J3 axis 50.00 45.00 40.00...
  • Page 159 Jun., 2015 MEE Printed in Japan on recycled paper. Specifications are subject to change without notice.

Table of Contents