Hitachi 5K100 - Travelstar - Hard Drive Specifications

Hitachi 5K100 - Travelstar - Hard Drive Specifications

2.5 inch ata/ide hard disk drive
Hide thumbs Also See for 5K100 - Travelstar - Hard Drive:
Table of Contents
Hitachi Global Storage Technologies
Hard Disk Drive Specification
Hitachi Travelstar 5K100
2.5 inch ATA/IDE hard disk drive
Models:
HTS541010G9AT00
HTS541080G9AT00
HTS541060G9AT00
HTS541040G9AT00
HTS541020G9AT00
Revision 1.4
11 July 2006
Table of Contents
loading

Summary of Contents for Hitachi 5K100 - Travelstar - Hard Drive

  • Page 1 Hitachi Global Storage Technologies Hard Disk Drive Specification Hitachi Travelstar 5K100 2.5 inch ATA/IDE hard disk drive Models: HTS541010G9AT00 HTS541080G9AT00 HTS541060G9AT00 HTS541040G9AT00 HTS541020G9AT00 Revision 1.4 11 July 2006...
  • Page 3 Hitachi Global Storage Technologies Hard Disk Drive Specification Hitachi Travelstar 5K100 2.5 inch ATA/IDE hard disk drive Models: HTS541010G9AT00 HTS541080G9AT00 HTS541060G9AT00 HTS541040G9AT00 HTS541030G9AT00 HTS541020G9AT00 Revision 1.4 11 July 2006...
  • Page 4 It is possible that this publication may contain reference to, or information about, Hitachi products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Hitachi intends to announce such Hitachi products, programming, or services in your country.
  • Page 5: Table Of Contents

    Table of contents List of Tables ..........................vii 1.0. General............................ 1 1.1. Introduction........................1 1.2. References......................... 1 1.3. Abbreviations........................1 1.4. Caution..........................3 1.5. Drive handling precautions....................4 2.0. Outline of the drive ........................ 5 Part 1. Functional specification ....................7 3.0.
  • Page 6 6.3. Reliability ........................26 6.3.1 Data Reliability ...................... 26 6.3.2 Failure prediction (S.M.A.R.T.) ................27 6.3.3 Cable noise interference ..................27 6.3.4 Service life and usage condition ................27 6.3.5 Preventive maintenance ..................27 6.3.6 Load/unload ......................27 6.4. Mechanical specifications....................30 6.4.1 Physical dimensions and weight ................
  • Page 7 7.9.3 Host Terminating Read DMA ................49 7.9.4 Device Terminating Read DMA ................50 7.9.5 Initiating Write DMA .................... 51 7.9.6 Device Pausing Write DMA .................. 52 7.9.7 Device Terminating Write DMA ................53 7.9.8 Host Terminating Write DMA ................54 7.10.
  • Page 8 11.6.6 Interface capability for power modes ..............75 11.6.7 Initial Power Mode at Power On ................. 75 11.7. Advanced Power Management (ABLE-3) feature ............75 11.7.1 Performance Idle Mode ..................76 11.7.2 Active Idle Mode ....................76 11.7.3 Low Power Idle Mode ..................76 11.7.4 Transition time .....................
  • Page 9 13.4. Flush Cache (E7h) ...................... 107 13.5. Flush Cache EXT (EAh)..................... 108 13.6. Format Track (50h: vendor specific) ................109 13.7. Format Unit (F7h: vendor specific) ................110 13.8. Identify Device (ECh)....................111 13.9. Idle (E3h/97h)......................120 13.10. Idle Immediate (E1h/95h)..................121 13.11.
  • Page 10 13.39.7 Selective self-test log data structure ..............183 13.39.8 Error reporting ....................185 13.40. Standby (E2h/96h) ....................186 13.41. Standby Immediate (E0h/94h).................. 187 13.42. Write Buffer (E8h)....................188 13.43. Write DMA (CAh/CBh) ................... 189 13.44. Write DMA EXT (35h) .................... 191 13.45.
  • Page 11: List Of Tables

    List of Tables Table 1: Formatted capacities ......................11 Table 2: Data sheet ........................11 Table 3: Cylinder allocation (40 Bp/ format) ................12 Table 4: Cylinder allocation (50 B/p format) ................13 Table 5: Performance characteristics ...................14 Table 6: Mechanical positioning performance ................14 Table 7: Full stroke seek time ......................15 Table 8: Single track seek time ....................15 Table 9: Average latency ......................16...
  • Page 12 Table 44: Reset response table ....................69 Table 45: Default Register Values ....................70 Table 46: Diagnostic codes ......................70 Table 47: Device behavior by ATA command ................72 Table 48: Power conditions ......................75 Table 49: Initial setting ........................79 Table 50: Usual operation for POR .....................80 Table 51: Password lost .......................81 Table 52: Command table for device lock operation ..............82 Table 53: Set Max SET PASSWORD data content ..............84...
  • Page 13 Table 90: Extended self-test log descriptor entry ..............133 Table 91: Read Long (22h/23h) ....................134 Table 92: Read Multiple (C4h) ....................136 Table 93: Read Multiple EXT (29h) ..................138 Table 94: Read Native Max ADDRESS (F8h) ................139 Table 95: Read Native Max ADDRESS EXT (27h) ..............140 Table 96: Read Sectors (20h/21h) .....................141 Table 97: Read Sector(s) EXT Command (24h) ...............142 Table 98: Read Verify Sectors (40h/41h) ..................144...
  • Page 14 Table 136: Write Multiple (C5h) ....................195 Table 137: Write Sectors Command (30h/31h) .................198 Table 138: Write Sector(s) EXT Command (34h) ..............200 Table 139: Time-out values .......................203 Table 140: Command coverage (1 of 2) ..................205 Table 141: Command coverage (2 of 2) ..................206 Table 142: SET FEATURES command coverage ..............207 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 15: General

    1.0 General 1.1 Introduction This document describes the specifications of the following Travelstar 5K100, a 2.5-inch hard disk drive, ATA/IDE interface with a rotational speed of 5400 RPM and a height of 9.5 mm: Drive name Model number Capacity Height (mm) Rotation Speed (rpm) Travelstar 5K100-100...
  • Page 16 European Economic Community electromagnetic compatibility Error Recovery Procedure Electrostatic Discharge Federal Communications Commission field replacement unit gravity (a unit of force) (32 ft/sec) per Hertz 1,000,000,000 bits 1,000,000,000 bytes ground hexadecimal hard disk drive Hertz Input integrated lead suspension Input/Output International Standards Organization 1,000 bytes Kbpi...
  • Page 17: Caution

    radio frequency interference relative humidity % RH per cent relative humidity root mean square revolutions per minute reset read/write second SELV secondary low voltage S.M.A.R.TSelf-Monitoring, Analysis, and Reporting Technology tracks per inch track transistor-transistor logic Underwriters Laboratory volt Verband Deutscher Electrotechniker watt 3-state transistor-transistor tristate logic...
  • Page 18: Drive Handling Precautions

    1.5 Drive handling precautions Do not press on the drive cover during handling. Travelstar 5K100 Hard Disk Drive Specification...
  • Page 19: Outline Of The Drive

    2.0 Outline of the drive • 2.5 inch, 9.5-mm height • Formatted capacities of 100 GB, 80 GB, 60 GB, 40 GB, 30GB, 20 GB • 512 bytes/sector • AT Interface (Enhanced IDE) conforming to ATA/ATAPI-6 • Integrated controller • No-ID recording format •...
  • Page 20 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 21: Part 1. Functional Specification

    Part 1. Functional specification Travelstar 5K100 Hard Disk Drive Specification...
  • Page 22 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 23: Fixed-Disk Subsystem Description

    3.0 Fixed-disk subsystem description 3.1 Control electronics The control electronics works with the following functions: • AT Interface Protocol • Embedded Sector Servo • No-ID (TM) formatting • Multizone recording • Code: 100/106 • System ECC • Enhanced Adaptive Battery Life Extender 3.2 Head disk assembly data The following technologies are used in the drive: •...
  • Page 24 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 25: Drive Characteristics

    4.0 Drive characteristics 4.1 Formatted capacity Table 1: Formatted capacities 100GB 80GB 60GB 40GB 30GB 20GB Physical Layout Bytes per sector Sectors per track 440-891 429-880 429-880 429-880 400-880 429-880 Number of heads Number of disks Logical layout Number of heads Number of Sec- tors/track Number of Cylin-...
  • Page 26: Cylinder Allocation

    4.3 Cylinder allocation Data format is allocated by each characteristics in 3 different Adaptive formats described below. Table 3: Cylinder allocation (40 Bp/ format) 40 B/p format Zone Cylinders Sectors/Track Data Zone 0 0 - 4,211 Data Zone 1 4,212 - 8,423 Data Zone 2 8,424 - 10,607 Data Zone 3...
  • Page 27: Table 4: Cylinder Allocation (50 B/P Format)

    Table 4: Cylinder allocation (50 B/p format) Data Zone 0 0 - 3,839 Data Zone 1 3,840 - 6,527 Data Zone 2 6,528 - 9,727 Data Zone 3 9,728 - 12,159 Data Zone 4 12,160 - 15,359 Data Zone 5 15,360 - 17,663 Data Zone 6 17,664 - 19,327...
  • Page 28: Performance Characteristics

    4.4 Performance characteristics Drive performance is characterized by the following parameters: • Command overhead • Mechanical head positioning Seek time Latency • Data transfer speed • Buffering operation (read ahead/write cache) Note: All the above parameters contribute to drive performance. There are other parameters that contribute to the performance of the actual system.
  • Page 29: Table 7: Full Stroke Seek Time

    “Typical” and “Max” are used throughout this document and are defined as follows: Typical Average of the drive population tested at nominal environmental and voltage conditions. Maximum value measured on any one drive over the full range of the environmental and voltage conditions.
  • Page 30: Operating Modes

    4.4.2.4 Average latency Table 9: Average latency Rotational speed Time for one Average latency (RPM) revolution (ms) (ms) 5400 11.1 4.4.2.5 Drive ready time Table 10: Drive ready time Drive ready time (sec) Condition Typical Power on to Ready The condition in which the drive is able to perform a media access command (for exam- Ready ple –...
  • Page 31: Table 12: Drive Ready Time

    Table 11: Description of operating modes Operating mode Description The device interface is capable of accepting commands. The spindle motor is stopped. Standby All circuitry except the host interface is in power saving mode. The execution of com- mands is delayed until the spindle becomes ready. The device requires a soft reset or a hard reset to be activated.
  • Page 32 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 33: Data Integrity

    5.0 Data integrity 5.1 Data loss at power off • Data loss will not be caused by a power off during any operation except the write operation. • A power off during a write operation causes the loss of any received or resident data that has not been written onto the disk media.
  • Page 34: Write Safety

    5.4 WRITE safety The drive ensures that the data is written into the disk media properly. The conditions listed below are monitored during a write operation. When one of these conditions exceeds the criteria, the write operation is terminated and the automatic retry sequence is invoked. •...
  • Page 35: Ecc

    5.8 ECC The 10 bit 40 symbol non interleaved ECC processor provides user data verification and correction capa- bility. The first 6 symbol of ECC are 4 check symbols for user data and the 2 symbol system ECC. The other 34 symbols are Read Solomon ECC. Hardware logic corrects up to 16 symbols (20 bytes) errors on- the-fly.
  • Page 36 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 37: Specification

    6.0 Specification 6.1 Environment 6.1.1 Temperature and humidity Table 13: Environmental condition Operating conditions Temperature 5 to 55ºC (See note below) Relative humidity 8 to 90%, non-condensing Maximum wet bulb temperature 29.4ºC, non-condensing Maximum temperature gradient 20ºC/hour Altitude –300 to 3,048 m (10,000 ft) Non-operating conditions Temperature –40 to 65ºC...
  • Page 38: Table 14: Limits Of Temperature And Humidity

    Table 14: Limits of temperature and humidity Specification (Environment) 41'C/95% 31'C/90% WetBulb 40'C WetBulb29.4'C Non Operating Operating 65'C/23% 55'C/15% Temperature (degC) Travelstar 5K100 Hard Disk Drive Specification...
  • Page 39: Radiation Noise

    6.1.1.1 Corrosion test The drive must be functional and show no signs of corrosion after being exposed to a temperature humidity stress of 50°C/90% RH (relative humidity) for one week followed by a temperature and humidity drop to 25°C/40%RH in 2 hours. 6.1.2 Radiation noise The drive shall work without degradation of the soft error rate under the following magnetic flux density limits at the enclosure surface.
  • Page 40: Power Consumption Efficiency

    Watts (RMS typical) All models Active Idle average Low Power Idle average 0.65 Read average Write average Seek average Standby Sleep Startup (max. peak) Average from power on to ready Footnotes: The maximum fixed disk ripple is measured at the 5 volt input of the drive. The disk drive shall not incur damage for an over voltage condition of +25% (maximum duration of 20 ms) on the 5 volt nominal supply.
  • Page 41: Failure Prediction (S.m.a.r.t.)

    6.3.2 Failure prediction (S.M.A.R.T.) The drive supports the Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) function. The details are described in Section 11.9, “S.M.A.R.T. Function” on page 77 and Section 13.39, “S.M.A.R.T. Function Set (B0h)” on page 168. 6.3.3 Cable noise interference To avoid any degradation of performance throughput or error when the interface cable is routed on top or comes in contact with the HDA assembly, the drive must be grounded electrically to the system frame by four screws.
  • Page 42 In systems that use this drive consideration should be given to the design of the system power switch. Hitachi recommends that the switch operate under control of the BIOS rather than be hardwired. The same recom- mendation is made for cover-close switches. When a hardwired switch is turned off, emergency unload occurs, as well as the problems cited in Section 5.1, “Data loss at power off”...
  • Page 43 HDD to nontypical mechan- ical stress. Power cycling testing may be required to test the boot-up function of the system. In this case Hitachi recommends that the power-off portion of the cycle contain the sequence specified in Section 6.3.6.2, “Required Power-Off Sequence”...
  • Page 44: Mechanical Specifications

    6.4 Mechanical specifications 6.4.1 Physical dimensions and weight The following table lists the dimensions of the drive. Table 18: Physical dimensions and weight 100GB, 80GB, 60GB 40GB, 30GB, 20GB models models Height [mm] 9.5±0.2 9.5±0.2 Width [mm] 69.85±0.25 69.85±0.25 Length [mm] 100.2±0.25 100.2±0.25 Weight [grams - maximum]...
  • Page 45: Mounting Hole Locations

    6.4.2 Mounting hole locations The mounting hole locations and size of the drive are shown below. 6.4.3 Connector and jumper description A jumper is used to designate the drive address as either master or slave. The jumper setting method is described in Section 7.10, “Drive address setting”...
  • Page 46: Load/Unload Mechanism

    The recommended mounting screw depth is 3.0±0.3 mm for bottom and 3.5±0.5 mm for horizontal mounting. The user is responsible for using the appropriate screws or equivalent mounting hardware to mount the drive securely enough to prevent excessive motion or vibration of the drive at seek operation or spindle rotation. 6.4.5 Load/unload mechanism The head load/unload mechanism is provided to protect the disk data during shipping, movement, or storage.
  • Page 47: Vibration And Shock

    6.5 Vibration and shock All vibration and shock measurements in this section are for drives without mounting attachments for systems. The input level shall be applied to the normal drive mounting points.Vibration tests and shock tests are to be conducted by mounting the drive to a table using the bottom four mounting holes.
  • Page 48: Operating Shock

    6.5.2.1 Random vibration The test consists of a random vibration applied in each of three mutually perpendicular axes for a duration of 15 minutes per axis. The PSD levels for the test simulating the shipping and relocation environment is shown below.
  • Page 49: Acoustics

    6.6 Acoustics 6.6.1 Sound power levels The criteria of A-weighted sound power level are described below. Measurements are to be taken in accordance with ISO 7779. The mean of the sample of 40 drives is to be less than the typical value. Each drive is to be less than the maximum value. The drives are to meet this requirement in both board down orientations.
  • Page 50: Identification Labels

    6.7 Identification labels The following labels are affixed to every drive: • A label which is placed on the top of the head disk assembly containing the statement "Made by Hitachi" or equivalent, part number, EC number, and FRU number.
  • Page 51: Ul And Csa Approval

    6.9.1 UL and CSA approval The drive is qualified per UL (Underwriters Laboratory) 60950 Third Edition (2000) and CAN/CSA C22.2 No.60950-1 Third Edition, for use in Information Technology Equipment, including Electric Business Equipment. The UL Recognition or the CSA certification is maintained for the product life. The UL and C-UL recognition mark or the CSA monogram for CSA certification appears on the drive.
  • Page 52 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 53: Electrical Interface Specification

    7.0 Electrical interface specification 7.1 Cabling The maximum cable length from the host system to the hard disk drive plus circuit pattern length in the host system shall not exceed 18 inches. 7.2 Interface connector The signal connector for AT attachment is designed to mate with Dupont part number 69764-044 or equivalent. The figure below and “”...
  • Page 54: Signal Definitions

    7.3 Signal definitions The pin assignments of interface signals are listed as follows:Signal definitions Table 25: Signal definitions SIGNAL Type SIGNAL Type RESET- DD07 3–state DD08 3–state DD06 3–state DD09 3–state DD05 3–state DD10 3–state DD04 3–state DD11 3–state DD03 3–state DD12 3–state...
  • Page 55: Signal Descriptions

    Table 26: Special signal definitions for Ultra DMA Special Definition Conventional (for Ultra DMA) Definition DDMARDY- IORDY Write Operation HSTROBE DIOR- STOP DIOW- HDMARDY- DIOR- Read Operation DSTROBE IORDY STOP DIOW- 7.4 Signal descriptions DD00–DD15 A 16-bit bi-directional data bus between the host and the drive. The lower 8 lines, DD00-07, are used for Regis- ter and ECC access.
  • Page 56 DASP- This is a time-multiplexed signal which indicates that a drive is active or that device 1 is present. This signal is driven by an Open-Drain driver and internally pulled up to 5.0 volts through a 10 k. resistor. During a Power- On initialization or after RESET- is negated, DASP- shall be asserted by device 1 within 400 ms to indicate that device 1 is present.
  • Page 57 extend the PIO cycle. This line can be connected to the host IORDY signal in order to insert a WAIT state(s) into the host PIO cycle. This signal is an Open-Drain output with 16mA sink capability. 5V Power There are two input pins for the +5 V power supply. One is the "+5 V Logic" input pin and the second is the "+5 V Motor"...
  • Page 58: Interface Logic Signal Levels

    7.5 Interface logic signal levels The interface logic signals have the following electrical specifications: Voltage Input high (ViH) 2.0 V min./5.5 V max. Inputs Voltage input low (ViL) –0.5 V min./0.8 V max. Voltage output high at IoH 2.4 V min. min (VoH) Outputs Voltage output low at IoL...
  • Page 59: Pio Timings

    7.7 PIO timings The PIO cycle timings meet Mode 4 of the ATA/ATAPI-6 description. C S(1:0)- D A(2:0) D IO R -, D IO W - W rite data D D (15:0) R ead data D D (15:0) t7(*) t8(*) IO C S16-(*) IO R D Y (*) U p to ATA-2 (m ode-0,1,2)
  • Page 60: Multi Word Dma Timings

    7.8 Multi word DMA timings The Multi word DMA timings meet Mode 2 of the ATA/ATAPI-6 description. DMARQ tLR/tLW DMACK- tKR/tKW DIOR-/DIOW- READ DD(15:0) WRITE DD(15:0) Table 28: Multiword DMA cycle timings PARAMETER DESCRIPTION MIN (ns) MAX (ns) Cycle time –...
  • Page 61: Ultra Dma Timings

    7.9 Ultra DMA timings The Ultra DMA timings meet Mode 0, 1, 2, 3, 4 and 5 of the Ultra DMA Protocol. 7.9.1 Initiating Read DMA DMARQ DMACK- tACK tENV STOP tACK tENV t2CYC HDMARDY- tZIORDY tCYC tCYC DSTROBE tZAD DD(15:0) xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxx...
  • Page 62: Host Pausing Read Dma

    7.9.2 Host Pausing Read DMA DMARQ DMACK- STOP HDMARDY- tRFS DSTROBE Table 30: Ultra DMA cycle timings (Host Pausing Read) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 PARAMETER DESCRIPTION (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)
  • Page 63: Host Terminating Read Dma

    7.9.3 Host Terminating Read DMA DMARQ tMLI DMACK- tACK STOP tACK HDMARDY- tRFS tIORDYZ DSTROBE xxx RD Data xxxxxxxxxxxxxxxxxx xxxxxxxxxx DD(15:0) tZAH Device drives DD Host drives DD Table 31: Ultra DMA cycle timings (Host Terminating Read) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4...
  • Page 64: Device Terminating Read Dma

    7.9.4 Device Terminating Read DMA DMARQ tMLI DMACK- tACK STOP tACK HDMARDY- tIORDYZ DSTROBE xxxxx xxxxxxxxxxxxxxxxxx xxxxxxxxxx DD(15:0) tZAH Host drives DD Device drives DD Table 32: Ultra DMA cycle timings (Device Terminating Read) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5...
  • Page 65: Initiating Write Dma

    7.9.5 Initiating Write DMA DMARQ DMACK- tENV tACK STOP tZIORDY t2CYC DDMARDY- tCYC tCYC tACK HSTROBE DD(15:0) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx WT Data WT Data WT Data Host drives DD Table 33: Ultra DMA cycle timing (Initiating Write) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5...
  • Page 66: Device Pausing Write Dma

    7.9.6 Device Pausing Write DMA DMARQ DMACK- STOP DDMARDY- tRFS HSTROBE Table 34: Ultra DMA cycle timing (Device Pausing Write) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 PARAMETER DESCRIPTION (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns)
  • Page 67: Device Terminating Write Dma

    7.9.7 Device Terminating Write DMA DMARQ tMLI DMACK- tACK STOP tIORDYZ DDMARDY- tACK tRFS HSTROBE xxx WT Data xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx DD(15:0) Host drives DD Table 35: Ultra DMA cycle timings (Device TerminatingWrite) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 PARAMETER...
  • Page 68: Host Terminating Write Dma

    7.9.8 Host Terminating Write DMA DMARQ tMLI DMACK- tACK STOP tIORDYZ DDMARDY- tACK HSTROBE xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx DD(15:0) Host drives DD Table 36: Ultra DMA cycle timings (Host Terminating Write) MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 PARAMETER DESCRIPTION (ns)
  • Page 69: Drive Address Setting

    7.10 Drive address setting A jumper placed on the interface connector determines the drive address. Three drive addresses are shown below. Two addresses require the setting of a jumper. Setting 1—Device 0 (Master) (no jumper is used) Setting 2—Device 1 (Slave) Setting 3—Cable Select Setting 4—Do not attach a jumper here Setting 5—Do not attach a jumper here...
  • Page 70: Addressing Of Hdd Registers

    7.11 Addressing of HDD registers The host addresses the drive through a set of registers called a Task File. These registers are mapped into the host's I/O space. Two chip select lines (CS0- and CS1-) and three address lines (DA00–02) are used to select one of these registers, while a DIOR- or DIOW- is provided at the specified time.
  • Page 71: Part 2. Interface Specification

    Part 2. Interface specification Travelstar 5K100 Hard Disk Drive Specification...
  • Page 72 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 73: General

    8.0 General 8.1 Introduction This specification describes the host interface of the Travelstar 5K100. The interface conforms to the Working Document of Information technology, AT Attachment with Packet Interface Extension (ATA/ATAPI-6) Revision 2, dated 2 August 2001, with certain limitations described in Section 9.0, “Deviations from standard”...
  • Page 74 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 75: Deviations From Standard

    9.0 Deviations from standard The device conforms to the referenced specifications, with deviations described below. The interface conforms to the Working Document of Information Technology, AT Attachment with Packet Interface Extension (ATA/ATAPI-6) Revision 3, dated 30 October 2001, with the following deviation: Write Verify WRITE VERIFY command does not include read verification after write operation.
  • Page 76 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 77: Register

    10.0 Register Table 37: Register Set Addresses Functions CS0- CS1- READ (DIOR-) WRITE (DIOW-) Data bus high impedence Not used Control block registers Data bus high impedance Not used Data bus high impedance Not used Alternate Status Device Control Device Address Not used Command block registers Data...
  • Page 78: Alternate Status Register

    10.1 Alternate Status Register Table 38: Alternate Status Register This register contains the same information as the Status Register. The only difference between this register and the Status Register is that reading the Alternate Status Register does not imply an interrupt acknowledge or a clear of a pending interrupt.
  • Page 79: Device Control Register

    10.4 Device Control Register Table 39: Device Control Register SRST -IEN Definitions HOB (high order byte) is defined by the 48-bit Address feature set. A write to any Command Register shall clear the HOB bit to zero. SRST Software Reset. The device is held at reset when RST = 1. Setting RST = 0 again enables the (RST) device.
  • Page 80: Device Register

    10.6 Device Register Table 41: Device Head/Register This register contains the device and head numbers. Definitions Binary encoded address mode select. When L = 0, addressing is by CHS mode. When L = 1, addressing is by LBA mode. Device. When DRV = 0, device 0 (Master) is selected. When DRV = 1, device 1 (Slave) is selected.
  • Page 81: Lba High Register

    10.9 LBA High Register This register is command specific. This is used with the Set Features command, S.M.A.R.T. Function Set com- mand and Format Unit command. When 48-bit addressing commands are used, the "most recently written" content contains LBA Bits 16-23, and the "previous content"...
  • Page 82 Definitions Busy. Bit BSY=1 whenever the device is accessing the registers. The host should not read or write any registers when BSY=1. If the host reads any register when BSY=1, the contents of the Status Register will be returned. DRDY Device Ready.
  • Page 83: General

    11.0 General 11.1 Reset response ATA has the following three types of resets: The device executes a series of electrical circuitry diagnostics, spins up the Power On Reset (POR) head disk assembly, tests speed and other mechanical parametric, and sets default values.
  • Page 84: Register Initialization

    11.2 Register initialization After a power on, a hard reset, or a software reset, the register values are initialized as shown in the table below. Table 45: Default Register Values Register Default Value Error Diagnostic Code Sector Count LBA Low LBA Mid LBA High Device...
  • Page 85: Diagnostic And Reset Considerations

    11.3 Diagnostic and Reset considerations The Set Max password, the Set Max security mode and the Set Max unlock counter are not retained over a Power On Reset but are retained over a Hard Reset or Soft Reset. For each Reset and Execute Device Diagnostic, the diagnostic is done as follows: Power On DASP–...
  • Page 86: Power-Off Considerations

    11.4 Power-off considerations 11.4.1 Load/Unload Load/Unload is a functional mechanism of the hard disk drive and is controlled by the drive microcode. Specifically, unloading of the heads is invoked by the following commands. Table 47: Device behavior by ATA command Command Response Standby...
  • Page 87: Sector Addressing Mode

    You may then turn off the drive in the following order: 1. Issue Standby Immediate or sleep command 2. Wait until COMMAND COMPLETE STATUS is returned. (It may take up to 350 ms in a typical case.) 3. Terminate power to drive This power-down sequence should be followed for entry into any system power-down state, system suspend state, or system hibernation state.
  • Page 88: Power Management Features

    11.6 Power management features The power management feature set permits a host to modify the behavior in a manner which reduces the power required to operate. The power management feature set provides a set of commands and a timer that enables a device to implement low power consumption modes.
  • Page 89: Standby Timer

    11.6.4 Standby timer The standby timer provides a method for the device to automatically enter standby mode from either active or idle mode following a host programmed period of inactivity. If the device is in the active or idle mode, the device waits for the specified time period and if no command is received, the device automatically enters the standby mode.
  • Page 90: Performance Idle Mode

    • A SET FEATURES subcommand to enable Advanced Power Management • A SET FEATURES subcommand to disable Advanced Power Management The Advanced Power Management feature is independent of the Standby timer setting. If both Advanced Power Management level and the Standby timer are set, the device will go to the Standby state when the timer times out or the device's Advanced Power Management algorithm indicates that it is time to enter the Standby state.
  • Page 91: Function

    11.9 S.M.A.R.T. Function The intent of Self-monitoring, analysis, and reporting technology (S.M.A.R.T.) is to protect user data and prevent unscheduled system downtime that may be caused by predictable degradation and/or fault of the device. By monitoring and storing critical performance and calibration parameters, S.M.A.R.T. devices employ sophisticated data analysis algorithms to predict the likelihood of near-term degradation or fault condition.
  • Page 92: Operation With Power Management Modes

    11.9.6 S.M.A.R.T. operation with power management modes The device saves attribute values automatically on every head unload timing except the emergency unload, even if the attribute auto save feature is not enabled. The head unload is done not only by Standby, Standby Immediate, Sleep command, and Hard Reset, but also by the Standby timer.
  • Page 93: Password

    The system manufacturer or dealer who intends to enable the device lock function for end users must set the master password even if only single level password protection is required. Otherwise, the default master password which is set by Hitachi Global Storage Technologies can unlock a device that is locked with a user password 11.10.4 Master Password Revision Code This Master Password Revision Code is set by Security Set Password command with the master password.
  • Page 94: Table 50: Usual Operation For Por

    11.10.4.3 Operation from POR after user password is set When Device Lock Function is enabled, the device rejects media access command until a Security Unlock command is successfully completed. Table 50: Usual operation for POR Device Locked mode Unlock CMD Erase Prepare Non-media Access Media Access...
  • Page 95: Table 51: Password Lost

    11.10.4.4 User Password lost If the User Password is forgotten and High level security is set, the system user cannot access any data. However the device can be unlocked using the Master Password. If a system user forgets the User Password and Maximum security level is set, data access is impossible. However the device can be unlocked using the Security Erase Unit command to unlock the device and erase all user data with the Master Password.
  • Page 96: Command Table

    11.10.5 Command table This table shows the device's response to commands when the Security Mode Feature Set (Device lock function) is enabled. Table 52: Command table for device lock operation Device Mode Device Mode Command Command Locked Unlocked Frozen Locked Unlocked Frozen Check Power Mode...
  • Page 97: Protected Area Function

    11.11 Protected Area Function Protected Area Function provides a protected area which cannot be accessed via conventional methods. This protected area is used to contain critical system data such as BIOS or system management information. The contents of the entire system main memory may also be dumped into the protected area to resume after a system power off. The LBA/CYL changed by the following commands affects the Identify Device Information.
  • Page 98: Set Max Security Extension Commands

    From this point the protected area cannot be accessed until the next Set Max ADDRESS command is issued. Any BIOS, device driver, or application software accesses the drive as if it is a 528 MB device because the device behaves like a 528 MB device. 3.
  • Page 99: Address Offset Feature (Vendor Specific)

    The password, the Set Max security mode, and the unlock counter do not persist over a power cycle but persist over a hardware or software reset. NOTE: If this command is immediately preceded by a Read Native MAX ADDRESS command, it shall be interpreted as a Set Max ADDRESS command regardless of Feature register value.
  • Page 100: Identify Device Data

    Disable Address Offset Feature removes the address offset and sets the size of the drive reported by the Identify Device command back to the size specified in the last nonvolatile Set Max Address command. Table 55: Device address map before and after Set Feature 11.12.2 Identify Device Data Identify Device data, word 83, bit 7 indicates the device supports the Address Offset Feature.
  • Page 101: Seek Overlap

    11.13 Seek Overlap The drive provides accurate seek time measurement method. The seek command is usually used to measure the device seek time by accumulating execution time for a number of seek commands. With typical implementation of the seek command, this measurement must include the device and host command overhead. To eliminate this overhead, the drive overlaps the seek command as described below.
  • Page 102: Reassign Function

    11.15 Reassign Function The Reassign Function is used with read commands and write commands. The sectors of data for reassignment are prepared as the spare data sector. The one entry can register 256 consecutive sectors maximum. This reassignment information is registered internally, and the information is available right after completing the reassign function.
  • Page 103: 48-Bit Address Feature Set

    11.16 48-bit Address Feature Set The 48-bit Address feature set allows devices with capacities up to 281,474,976,710,655 sectors. This allows device capacity up to 144,115,188,075,855,360 bytes. In addition, the number of sectors that may be transferred by a single command are increased by increasing the allowable sector count to 16 bits. Commands unique to the 48-bit Address feature set are: •...
  • Page 104 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 105: Command Protocol

    12.0 Command protocol The commands are grouped into different classes according to the protocols followed for command execution. The command classes with their associated protocols are defined below. For all commands, the host must first check to see if BSY = 1, and should proceed no further unless and until BSY = 0.
  • Page 106: Data Out Commands

    f. The device sets DRQ = 0 after the sector (or block) has been transferred to the host. 4. For the Read Long command: a. The device sets BSY = 1 and prepares for data transfer. b. When the sector of data is available for transfer to the host, the device sets BSY = 0 and DRQ=1 and interrupts the host.
  • Page 107: Non-Data Commands

    • Write Sector(s) • Write Sector(s) EXT • Write Verify Execution includes the transfer of one or more 512 byte (> 512 bytes on Write Long) sectors of data from the host to the device. 1. The host writes any required parameters to the Features, Sector Count, LBA, and Device Registers. 2.
  • Page 108 • Flush Cache EXT • Format Unit • Idle • Idle Immediate • Initialize Device Parameters • Read Native Max ADDRESS • Read Native Max ADDRESS EXT • Read Verify Sector(s) • Read Verify Sector(s) EXT • Recalibrate • Security Erase Prepare •...
  • Page 109: Dma Data Transfer Commands

    12.4 DMA Data Transfer commands: The following are DMA Data Transfer commands: • Read DMA • Read DMA EXT • Write DMA • Write DMA EXT Data transfers using DMA commands differ in two ways from PIO transfers: • Data transfers are performed using the Slave DMA channel •...
  • Page 110 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 111: Command Descriptions

    13.0 Command descriptions The table below shows the commands that are supported by the device. Table 59: “Command Set (subcommand)” on page 100 shows the subcommands that are supported by each command or feature. Travelstar 5K100 Hard Disk Drive Specification...
  • Page 112: Table 57: Command Set (1 Of 2)

    Table 57: Command Set (1 of 2) Code Binary Code Bit Protocol Command (Hex) 7 6 5 4 3 2 1 0 Check Power Mode 1 1 1 0 0 1 0 1 Check Power Mode* 1 0 0 1 1 0 0 0 Device Configuration RESTORE 1 0 1 0 0 0 0 1 Device Configuration FREEZE LOCK...
  • Page 113 Set Features 1 1 1 0 1 1 1 1 Set Max ADDRESS 1 1 1 1 1 0 0 1 Set Max ADDRESS EXT 0 0 1 1 0 1 1 1 Set Max FREEZE LOCK 1 1 1 1 1 0 0 1 Set Max LOCK 1 1 1 1 1 0 0 1 Set Max SET PASSWORD...
  • Page 114: Table 59: Command Set (Subcommand)

    Table 59: Command Set (subcommand) Command Feature Command (Subcommand) Code (Hex) Register (Hex) S.M.A.R.T. Function S.M.A.R.T. Read Attribute Values S.M.A.R.T. Read Attribute Thresholds S.M.A.R.T. Enable/Disable Attribute Autosave S.M.A.R.T. Save Attribute Values S.M.A.R.T. Execute Off-line Immediate S.M.A.R.T. Read Log Sector S.M.A.R.T. Write Log Sector S.M.A.R.T.
  • Page 115 The "Command set" table beginning on page page 98 shows the commands that are supported by the device. The "Command Set (Subcommand)" table above shows the sub-commands that are supported by each command or fea- ture. The following symbols are used in the command descriptions: Input registers This indicates that the bit is always set to 0.
  • Page 116: Check Power Mode (E5H/98H)

    13.1 Check Power Mode (E5h/98h) Table 60: Check Power Mode Command (E5h/98h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 117: Device Configuration Overlay (B1H)

    13.2 Device Configuration Overlay (B1h) Table 61: Device Configuration Overlay Command (B1h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 118: Device Configuration Identify (Subcommand C2H)

    13.2.3 DEVICE CONFIGURATION IDENTIFY (subcommand C2h) The DEVICE CONFIGURATION IDENTIFY command returns a 512 byte data structure via PIO data-in transfer. The content of this data structure indicates the selectable commands, modes, and feature sets that the device is capable of supporting. If a DEVICE CONFIGURATION SET command has been issued reducing the capabilities, the response to an IDENTIFY DEVICE or IDENTIFY PACKET DEVICE command will reflect the reduced set of capabilities, while the DEVICE CONFIGURATION IDENTIFY command will reflect the entire set of selectable capabilities.
  • Page 119: Table 63: Device Configuration Overlay Data Structure

    Table 63: Device Configuration Overlay Data structure Word Content 0001h Data Structure revision Multiword DMA modes supported 15-3 Reserved 1 = Multiword DMA mode 2 and below are supported 1 = Multiword DMA mode 1 and below are supported 1 = Multiword DMA mode 0 is supported Ultra DMA modes supported 15-6 Reserved...
  • Page 120: Execute Device Diagnostic (90H)

    13.3 Execute Device Diagnostic (90h) Table 65: Execute Device Diagnostic command (90h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 121: Flush Cache (E7H)

    13.4 Flush Cache (E7h) Table 66: Flush Cache command (E7h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 122: Flush Cache Ext (Eah)

    13.5 Flush Cache EXT (EAh) Table 67: Flush Cache command (E7h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - - Data High...
  • Page 123: Format Track (50H: Vendor Specific)

    13.6 Format Track (50h: vendor specific) Table 68: Format Track command (50h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 124: Format Unit (F7H: Vendor Specific)

    13.7 Format Unit (F7h: vendor specific) Table 69: Format Unit command (F7h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 125: Identify Device (Ech)

    13.8 Identify Device (ECh) Table 70: Identify Device command (ECh) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 126: Table 71: Identify Device Information. (Part 1 Of 7)

    Table 71: Identify device information. (Part 1 of 7) Word Content Description 045AH drive classi- bit assignments fication 15(=0) 1=ATAPI device, 0=ATA device 14(=0) 1=format speed tolerance gap required 13(=0) 1=track offset option available 12(=0) 1=data strobe offset option available 11(=0) 1=rotational speed tolerance >...
  • Page 127: Table 72: Identify Device Information. (Part 2 Of 7)

    Table 72: Identify device information. (Part 2 of 7) Word Content Description 0000H * Capable of double word I/O, '0000'= cannot perform 0F00H Capabilities, bit assignments: 15-14(=0) Reserved 13(=0) Standby timer value are vendor specific 12(=0) Reserved 11(=1) IORDY Supported 10(=1) IORDY can be disabled 9(=1)
  • Page 128: Table 73: Identify Device Information. (Part 3 Of 7)

    Note 1. See Table 78: “Number of cylinders/heads/sectors by model.” on page 119. Table 73: Identify device information. (Part 3 of 7) Word Content Description 0003H Flow Control PIO Transfer Modes Supported 15- 8(=0) Reserved 7- 0(=3) Advanced PIO Transfer Modes Supported '11' = PIO Mode 3 and 4 Supported 0078H Minimum Multiword DMA Transfer Cycle Time Per Word...
  • Page 129: Table 74: Identify Device Information. (Part 4 Of 7)

    Table 74: Identify device information. (Part 4 of 7) Word Content Description 7FE8H Command set supported 15(=0) Always 14(=1) Always 13(=1) 1=FLUSH CACEH EXT command supported 12(=1) 1=FLUSH CACHE command supported 11(=1) 1=Device Configuration Overlay command supported 10(=1) 1=48-bit Address feature set supported 9(=1) 1=Automatic Acoustic Management supported ** 8(=1)
  • Page 130: Table 75: Identify Device Information

    Table 75: Identify device information. (Part 5 of 7 Word Content Description 3XXXH Command set/feature enabled 15-14(=0) Reserved 13(=1) 1=FLUSH CACHE EXT command supported 12(=1) 1=FLUSH CACHE command supported 11(=x) 1=Device Configuration Overlay supported 10(=1) 1=48-bit Address feature set supported 9(=X) 1=Automatic Acoustic Management enabled 8(=X)
  • Page 131: Table 76: Identify Device Information. (Part 6 Of 7)

    Table 76: Identify device information. (Part 6 of 7) Word Content Description 40XXH Current Advanced Power Management level 15- 8(=40h) Reserved 7- 0(=xxh) Current Advanced Power Management level set by Set Features Command (01h to FEh) XXXXH Current Master Password Revision Codes XXXXH Hardware reset results 15-13...
  • Page 132: Table 77: Identify Device Information. (Part 7 Of 7)

    Table 77: Identify device information. (Part 7 of 7) Word Content Description 0XXXH Security Mode Feature. Bit assignments 15-9(=0) Reserved 8(=X) Security Level: 1= Maximum, 0= High 7-6(=0) Reserved 5(=0) 1=Enhanced security erase supported 4(=0) 1=Security count expired 3(=0) 1=Security Frozen 2(=0) 1=Security Locked 1(=0)
  • Page 133: Table 78: Number Of Cylinders/Heads/Sectors By Model

    Table 78: Number of cylinders/heads/sectors by model. Microcode revision MBxIAxx MBx0Axxx MBxAAxxx HTS541010G9AT00 Number of cylinders 3FFFh 3FFFh 3FFFh Number of heads Buffer size 3AE6h 3AE6h 3AE6h Total number of user BA52230h BA52230h BA52230h addressable sectors HTS541080G9AT00 Number of cylinders 3FFFh 3FFFh 3FFFh...
  • Page 134: Idle (E3H/97H)

    13.9 Idle (E3h/97h) Table 79: Idle command (E3h/97h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 135: Idle Immediate (E1H/95H)

    13.10 Idle Immediate (E1h/95h) Table 80: Idle Immediate command (E1h/95h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 136: Initialize Device Parameters (91H)

    13.11 Initialize Device Parameters (91h) Table 81: Initialize Device Parameters command (91h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 137: Read Buffer (E4H)

    13.12 Read Buffer (E4h) Table 82: Read Buffer (E4h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 138: Read Dma (C8H/C9H)

    13.13 Read DMA (C8h/C9h) Table 83: Read DMA command (C8h/C9h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 139 Input parameters from the device Sector Count This indicates the number of requested sectors not transferred. This will be zero, unless an unrecoverable error occurs. LBA Low This indicates the sector number of the last transferred sector. (L = 0). In LBA mode this register contains the current LBA bits 0–7.
  • Page 140: Read Dma Ext (25H)

    13.14 Read DMA EXT (25h) Table 84: Read DMA EXT (25h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - - Data High...
  • Page 141 Input parameters from the device LBA Low (HOB=0) LBA (7-0) of the address of the first unrecoverable error LBA Low (HOB=1) LBA (31-24) of the address of the first unrecoverable error LBA Mid (HOB=0) LBA (15-8) of the address of the first unrecoverable error LBA Mid (HOB=1) LBA (39-32) of the address of the first unrecoverable error LBA High (HOB=0)
  • Page 142: Read Log Ext (2Fh)

    13.15 Read Log Ext (2Fh) Table 85: Read Log Ext command (2Fh) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - -...
  • Page 143: General Purpose Log Directory

    Table 86: Log address definition Content Feature set Type address Log directory Read Only Extended Comprehensive SMART SMART error Read error log logging Only SMART self-test log SMART self-test See Note Extended SMART self-test log SMART self-test Read Only 80h-9Fh Host vendor specific SMART Read/Wri...
  • Page 144: Extended Comprehensive Smart Error Log

    13.15.2 Extended comprehensive SMART error log defines the format of each of the sectors that comprise the Extended Comprehensive SMART error log. Error log data structure shall not include errors attributed to the receipt of faulty commands such as command codes not implemented by the device or requests with invalid parameters or in valid addresses.
  • Page 145: Table 88: Command Data Structure

    Command data structure: Data format of each command data structure is shown below. Table 88: Command data structure Description Bytes Offset Device Control register Features register (7:0) (see Note) Features register (15:8) Sector count register (7:0) Sector count register (15:8) Sector number register (7:0) Sector number register (15:8) Cylinder Low register (7:0)
  • Page 146: Extended Self-Test Log Sector

    13.15.3.3 Device error count This field shall contain the total number of errors attributable to the device that have been reported by the device during the life of the device. This count shall not include errors attributed to the receipt of faulty commands such as commands codes not implemented by the device or requests with invalid parameters or invalid addresses.
  • Page 147: Table 90: Extended Self-Test Log Descriptor Entry

    Table 90: Extended self-test log descriptor entry Description Bytes Offset Self-test number Self-test execution status Power-on life timestamp in hours Self-test failure check point Failing LBA (7:0) Failing LBA (15:8) Failing LBA (23:16) Failing LBA (31:24) Failing LBA (39:32) Failing LBA (47:40) Vendor specific Travelstar 5K100 Hard Disk Drive Specification...
  • Page 148: Read Long (22H/23H)

    13.16 Read Long (22h/23h) Table 91: Read Long (22h/23h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 149 LBA Low This indicates the sector number of the transferred sector. (L = 0) In LBA mode, this register contains current LBA bits 0–7. (L = 1) LBA High/Low This indicates the cylinder number of the transferred sector. (L = 0) In LBA mode, this register contains current LBA bits 8–15 (Low), 16–23 (High).
  • Page 150: Read Multiple (C4H)

    13.17 Read Multiple (C4h) Table 92: Read Multiple (C4h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 151 LBA High/Low This indicates the cylinder number of the last transferred sector. (L = 0) In LBA mode, this register contains current LBA bits 8–15 (Mid), 16–23 (High). (L = 1) This indicates the head number of the last transferred sector. (L = 0) In LBA mode, this register contains current LBA bits 24–27.
  • Page 152: Read Multiple Ext (29H)

    13.18 Read Multiple EXT (29h) Table 93: Read Multiple EXT (29h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - - Data High...
  • Page 153: Read Native Max Address (F8H)

    13.19 Read Native Max ADDRESS (F8h) Table 94: Read Native Max ADDRESS (F8h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - -...
  • Page 154: Read Native Max Address Ext (27H)

    13.20 Read Native Max ADDRESS EXT (27h) Table 95: Read Native Max ADDRESS EXT (27h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low...
  • Page 155: Read Sectors (20H/21H)

    13.21 Read Sectors (20h/21h) Table 96: Read Sectors (20h/21h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 156: Read Sector(S) Ext (24H)

    13.22 Read Sector(s) EXT (24h) Table 97: Read Sector(s) EXT Command (24h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - -...
  • Page 157 Input parameters from the device LBA Low (HOB=0) LBA (7-0) of the address of the first unrecoverable error LBA Low (HOB=1) LBA (31-24) of the address of the first unrecoverable error LBA Mid (HOB=0) LBA (15-8) of the address of the first unrecoverable error LBA Mid (HOB=1) LBA (39-32) of the address of the first unrecoverable error LBA High (HOB=0)
  • Page 158: Read Verify Sectors (40H/41H)

    13.23 Read Verify Sectors (40h/41h) Table 98: Read Verify Sectors (40h/41h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 159 LBA High/Low This is the cylinder number of the last transferred sector. (L = 0) In LBA mode this register contains the current LBA bits 8–15 (Mid) and bits 16–23 (High). (L = 1) This is the head number of the last transferred sector. (L = 0) In LBA mode this register contains the current LBA bits 24–27.
  • Page 160: Ready Verify Sector(S) Ext (42H)

    13.24 Ready Verify Sector(s) EXT (42h) Table 99: Read Verify Sector(s) EXT Command (42h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low...
  • Page 161 Input parameters from the device LBA Low (HOB=0) LBA (7-0) of the address of the first unrecoverable error LBA Low (HOB=1) LBA (31-24) of the address of the first unrecoverable error LBA Mid (HOB=0) LBA (15-8) of the address of the first unrecoverable error LBA Mid (HOB=1) LBA (39-32) of the address of the first unrecoverable error LBA High (HOB=0)
  • Page 162: Recalibrate (1Xh)

    13.25 Recalibrate (1xh) Table 100: Recalibrate (1xh) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 163: Security Disable Password (F6H)

    13.26 Security Disable Password (F6h) Table 101: Security Disable Password (F6h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 164: Security Disable Password (F6H)

    13.27 Security Disable Password (F6h) Table 103: Security Disable Password (F6h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 165 The device will compare the password sent from this host with that specified in the control word. Identifier Zero indicates that the device should check the supplied password against the user password stored internally. One indicates that the device should check the given password against the master password stored internally.
  • Page 166: Security Erase Unit (F4H)

    13.28 Security Erase Unit (F4h) Table 104: Security Erase Unit (F4h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 167 This command disables the security mode feature (device lock function), however, the master password is still stored internally within the device and may be reactivated later when a new user password is set. If you execute this command on disabling the security mode feature (device lock function), the password sent by the host is NOT compared with the Master Password and the User Password.
  • Page 168: Security Freeze Lock (F5H)

    13.29 Security Freeze Lock (F5h) Table 106: Security Freeze Lock (F5h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 169: Security Set Password (F1H)

    13.30 Security Set Password (F1h) Table 107: Security Set Password (F1h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 170 Security Level A zero indicates a High level, a one indicates a Maximum level. If the host sets the High level and the password is forgotten then the Master Password can be used to unlock the device. If the host sets the Maximum level and the user password is forgotten, only a Security Erase Prepare/Security Unit command can unlock the device and all data will be lost.
  • Page 171: Security Unlock (F2H)

    13.31 Security Unlock (F2h) Table 109: Security Unlock (F2h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 172: Seek (7Xh)

    13.32 Seek (7xh) Table 110: Seek (7xh) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 173: Sense Condition (F0H: Vendor Specific)

    13.33 Sense Condition (F0h: vendor specific) Table 111: Sense Condition (F0h: vendor specific) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - -...
  • Page 174: Set Features (Efh)

    13.34 Set Features (EFh) Table 112: Set Features (EFh) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 175 Disable Power-Up in Standby feature set Disable Address Offset mode 4 bytes of ECC apply on Read Long/Write Long commands Disable Automatic Acoustic Management feature set Enable reverting to power on defaults Note 1. When the Feature register is 03h (= Set Transfer mode) the Sector Count Register specifies the transfer mechanism.
  • Page 176: Set Max Address (F9H)

    13.35 Set Max ADDRESS (F9h) Table 113: Set Max ADDRESS (F9h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 177 If a host protected area has been established by a Set Max Address Ext command, the device shall return command aborted Output parameters to the device Feature Destination code for this command SET MAX SET PASSWORD SET MAX LOCK SET MAX UNLOCK SET MAX FREEZE LOCK When the Set Max ADDRESS command is executed, this register is ignored.
  • Page 178: Set Max Address Ext (37H)

    13.36 Set Max ADDRESS EXT (37h) Table 114: Set Max ADDRESS EXT Command (37h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low...
  • Page 179 Output parameters to the device Option bit for selection whether nonvolatile or volatile. B=0 is volatile condition. When B=1, MAX Address which is set by Set Max Address Ext command is preserved by POR. When B=0, MAX Address which is set by Set Max Address Ext command will be lost by POR.
  • Page 180: Set Multiple (C6H)

    13.37 Set Multiple (C6h) Table 115: Set Multiple command (C6h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 181: Sleep (E6H/99H)

    13.38 Sleep (E6h/99h) Table 116: Sleep (E6h/99h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 182: Function Set (B0H)

    13.39 S.M.A.R.T. Function Set (B0h) Table 117: S.M.A.R.T. Function Set (B0h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 183: Function Subcommands

    13.39.1 S.M.A.R.T. Function Subcommands 13.39.1.1 S.M.A.R.T. Read Attribute Values (subcommand D0h) This subcommand returns the device's Attribute Values to the host. Upon receipt of the S.M.A.R.T. Read Attribute Values subcommand from the host, the device asserts BSY, saves any updated Attribute Values to the Attribute Data sectors, asserts DRQ, clears BSY, asserts INTRQ, and then waits for the host to transfer the 512 bytes of Attribute Value information from the device via the Data Register.
  • Page 184 13.39.1.5 S.M.A.R.T. Execute Off-line Immediate (subcommand D4h) This subcommand causes the device to immediately initiate the set of activities that collect Attribute data in an off- line mode (off-line routine) or execute a self-test routine in either captive or off-line mode. The LBA Low register shall be set to specify the operation to be executed.
  • Page 185: Table 118: Selective Self-Test Span Example

    Table 118: Selective self-test span example After the scan of the selected spans described above, a user may wish to have the rest of media read scanned as an off-line scan. In this case, the user shall set the flag to enable off-line scan in addition to the other settings. If an error occurs during the scanning of the test spans, the error is reported in the self-test execution status in the SMART READ DATA response and the off-line scan is not executed.
  • Page 186: Table 117: S.m.a.r.t. Function Set (B0H)

    The 512 bytes of data are returned at a command and the Sector Count value shall be set to one. The LBA Low shall be set to specify the log sector address. Log sector address Content Type S.M.A.R.T. Error Log Read Only Extended Comprehensive Read Only...
  • Page 187 If the device does not detect a Threshold Exceeded Condition, or detects a Threshold Exceeded Condition but involving attributes are advisory, the device loads 4Fh into the LBA Mid register, C2h into the LBA High register, clears BSY, and asserts INTRQ. If the device detects a Threshold Exceeded Condition for prefailure attributes, the device loads F4h into the LBA Mid register, 2Ch into the LBA High register, clears BSY, and asserts INTRQ.
  • Page 188: Device Attribute Data Structure

    13.39.2 Device Attribute Data Structure The following defines the 512 bytes that make up the Attribute Value information. This data structure is accessed by the host in its entirety using the S.M.A.R.T. Read Attribute Values subcommand. All multibyte fields shown in these data structures follow the ATA/ATAPI-6 specification for byte ordering, namely, that the least significant byte occupies the lowest numbered byte address location in the field.
  • Page 189: Individual Attribute Data Structure

    13.39.2.2 Individual Attribute Data Structure The following defines the 12 bytes that make up the information for each Attribute entry in the Device Attribute Data Structure. Description Byte Offset Value Attribute ID Number (01h to FFh) binary Status Flags bit flags Bit 0 Pre-Failure/Advisory Bit 1...
  • Page 190: Table 120: Status Flag Definitions

    Table 120: Status Flag definitions Flag Name Definition Pre-Failure/ If bit = 0, an Attribute Value less than or equal to its Advisory bit corresponding Attribute Threshold indicates an Advisory condition where the usage or age of the device has exceeded its intended design life period.
  • Page 191 13.39.2.4 Self-test execution status Definition Percent Self-test remaining. An approximation of the percent of the self-test routine remaining until completion given in ten percent increments. Valid values are 0 through 9. Current Self-test execution status. 0 The self-test routine completed without error or has never been run. 1 The self-test routine was aborted by the host.
  • Page 192 Off-line Read Scanning implemented bit The device does not support Off-line Read Scanning The device supports Off-line Read Scanning Self-test implemented bit Self-test routing is not implemented Self-test routine is implemented Reserved (0) 13.39.2.8 S.M.A.R.T. Capability This word of bit flags describes the S.M.A.R.T. capabilities of the device. The device will return 03h indicating that the device will save its Attribute Values prior to going into a power saving mode and supports the S.M.A.R.T.
  • Page 193: Device Attribute Thresholds Data Structure

    13.39.3 Device Attribute Thresholds data structure The following defines the 512 bytes that make up the Attribute Threshold information. This data structure is accessed by the host in its entirety using the S.M.A.R.T. Read Attribute Thresholds. All multibyte fields shown in these data structures follow the ATA/ATAPI-6 specification for byte ordering, that is, that the least significant byte occupies the lowest numbered byte address location in the field.
  • Page 194: Log Directory

    13.39.4 S.M.A.R.T Log Directory Table 121 defines the 512 bytes that make up the S.M.A.R.T Log Directory. The S.M.A.R.T Log Directory is on S.M.A.R.T Log Address zero and is defined as one sector long. Table 122: S.M.A.R.T. Log Director Description Bytes Offset S.M.A.R.T.
  • Page 195: Error Log Sector

    13.39.4.5 Data Structure Checksum The Data Structure Checksum is the 2’s compliment of the result of simple 8-but addition of the first 511 bytes in the data structure. 13.39.5 S.M.A.R.T. error log sector The following defines the 512 bytes that make up the S.M.A.R.T. error log sector. All multibyte fields shown in these data structures follow the ATA/ATAPI-6 specifications for byte ordering.
  • Page 196: Table 124: Command Data Structure

    Table 124: Command data structure. Description Byte Offset 1st command data structure 2nd command data structure 3rd command data structure 4th command data structure 5th command data structure Error data structure Table 125: Command data structure Description Byte Offset Device Control register Features register Sector count register LBA Low register...
  • Page 197: Self-Test Log Data Structure

    Sleep Standby Active/Idle S.M.A.R.T. Off-line or Self-test x5h-xAh Reserved xBh-xFh Vendor specific Note: The value of x is vendor specific 13.39.6 Self-test log data structure The following defines the 512 bytes that make up the Self-test log sector. All multibyte fields shown in these data structures follow the ATA/ATAPI-6 specifications for byte ordering.
  • Page 198: Table 128: Selective Self-Test Log

    Table 128: Selective self-test log D e s c r i p t i o n B y t e s O f f s e t R e a d / W r i t e D a t a s t r u c t u r e r e v i s i o n 0 0 h R / W S t a r t i n g L B A f o r t e s t s p a n 1...
  • Page 199: Error Reporting

    13.39.8 Error reporting The following table shows the values returned in the Status and Error Registers when specific error conditions are encountered by a device. Table 129: S.M.A.R.T. Error Codes Error condition Status Register Error Register A S.M.A.R.T. FUNCTION SET command was received by the device without the required key being loaded into the LBA High and LBA Mid registers.
  • Page 200: Standby (E2H/96H)

    13.40 Standby (E2h/96h) Table 130: Standby (E2h/96h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 201: Standby Immediate (E0H/94H)

    13.41 Standby Immediate (E0h/94h) Table 131: Standby Immediate (E0h/94h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 202: Write Buffer (E8H)

    13.42 Write Buffer (E8h) Table 132: Write Buffer (E8h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 203: Write Dma (Cah/Cbh)

    13.43 Write DMA (CAh/CBh) Table 133: Write DMA (CAh/CBh) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 204 LBA Low This indicates the sector number of the last transferred sector. (L = 0) In LBA mode this register contains the current LBA bits 0–7. (L = 1) LBA High/Mid This indicates the cylinder number of the last transferred sector. (L = 0) In LBA mode this register contains the current LBA bits 8–15 (Mid) and bits 16–23 (High).
  • Page 205: Write Dma Ext (35H)

    13.44 Write DMA EXT (35h) Table 134: Write DMA (35h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - - Data High...
  • Page 206 LBA High Current LBA (23-16) LBA High Previous LBA (47-40) Input parameters from the device LBA Low (HOB=0) LBA (7-0) of the address of the first unrecoverable error LBA Low (HOB=1) LBA (31-24) of the address of the first unrecoverable error LBA Mid (HOB=0) LBA (15-8) of the address of the first unrecoverable error LBA Mid (HOB=1)
  • Page 207: Write Long (32H/33H)

    13.45 Write Long (32h/33h) Table 135: Write Long (32h/33h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 208 LBA High/Mid This indicates the cylinder number of the sector to be transferred. (L = 0) In LBA mode this register contains current the LBA bits 8–15 (Mid) and bits 16–23 (High). (L = 1) This indicates the head number of the sector to be transferred. (L = 0) In LBA mode this register contains current the LBA bits 24–27.
  • Page 209: Write Multiple (C5H)

    13.46 Write Multiple (C5h) Table 136: Write Multiple (C5h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 210: Write Multiple Ext (39H)

    13.47 Write Multiple EXT (39h) Write Multiple EXT (39h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - - Data High...
  • Page 211 Input parameters from the device LBA Low (HOB=0) LBA (7-0) of the address of the first unrecoverable error LBA Low (HOB=1) LBA (31-24) of the address of the first unrecoverable error LBA Mid (HOB=0) LBA (15-8) of the address of the first unrecoverable error LBA Mid (HOB=1) LBA (39-32) of the address of the first unrecoverable error LBA High (HOB=0)
  • Page 212: Write Sectors (30H/31H)

    13.48 Write Sectors (30h/31h) Table 137: Write Sectors Command (30h/31h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data - - - - - - - - Data - - - - - - - - Feature...
  • Page 213 LBA High/Mid This indicates the cylinder number of the last transferred sector. (L = 0) In LBA mode this register contains the current LBA bits 8–15 (Mid) and bits 16–23 (High). (L = 1) This indicates the head number of the last transferred sector. (L = 0) In LBA mode this register contains the current LBA bits 24–27.
  • Page 214: Write Sectors(S) Ext (34H)

    13.49 Write Sectors(s) EXT (34h) Table 138: Write Sector(s) EXT Command (34h) Command Block Output Registers Command Block Input Registers Register 7 6 5 4 3 2 1 0 Register 7 6 5 4 3 2 1 0 Data Low - - - - - - - - Data Low - - - - - - - -...
  • Page 215: Write Verify (3Ch: Vendor Specific)

    Input parameters from the device LBA Low (HOB=0) LBA (7-0) of the address of the first unrecoverable error LBA Low (HOB=1) LBA (31-24) of the address of the first unrecoverable error LBA Mid (HOB=0) LBA (15-8) of the address of the first unrecoverable error LBA Mid (HOB=1) LBA (39-32) of the address of the first unrecoverable error LBA High (HOB=0)
  • Page 216 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 217: Timings

    14.0 Timings The timing of BSY and DRQ in Status Register are shown in the table below. Table 139: Time-out values INTERVAL START STOP TIME-OUT Power On Device Busy After Power On Status Register BSY=1 400 ns Power On Device Ready After Power On Status Register BSY=0 31 sec...
  • Page 218 Note 1. For SECURITY ERASE UNIT command, the execution time is referred to 13.27, “Security Erase Unit (F4h)” on page 144. Note 2. For FORMAT UNIT command, the execution time is referred to 13.7, “Format Unit (F7h: vendor specific)” on page 109. Travelstar 5K100 Hard Disk Drive Specification...
  • Page 219: Appendix

    15.0 Appendix 15.1 Commands Support Coverage The table below compares the command support coverage of the Travelstar 5K100 with the ATA-6 defined command set. The third column indicates the capability of the Travelstar 5K100 for those commands. Table 140: Command coverage (1 of 2) Implementation for ATA-6 Category Code...
  • Page 220: Table 141: Command Coverage (2 Of 2)

    Table 141: Command coverage (2 of 2) Implementation for ATA-6 Category Code Command Name Travelstar 5K100 Type READ DMA Mandatory READ DMA Obsoleted WRITE DMA Mandatory WRITE DMA Obsoleted WRITE DMA QUEUED Optional CFA WRITE MULTIPLE W/O ERASE Optional (Note 7) GET MEDIA STATUS Optional (Note 7) MEDIA LOCK...
  • Page 221: Set Features Commands Support Coverage

    Note 4. Power Management Feature Set Note 5 . S.M.A.R.T. Function Set Note 6. Security Mode Feature Set Note 7. Removable 15.2 SET FEATURES Commands Support Coverage The following table provides a list of Feature Registers, Feature Names, and implementation for the Travelstar 5K100.
  • Page 222: Changes From The Travelstar 4K40

    15.3 Changes from the Travelstar 4K40 The changes between the Travelstar 5K100 and the Travelstar 4K40 are listed below: • Identify device information data Travelstar 5K100 Hard Disk Drive Specification...
  • Page 223 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 224 Travelstar 5K100 Hard Disk Drive Specification...
  • Page 225: Index

    Hitachi Global Storage Technologies Index Drive handling precautions, 4 Drive ready time, 16 Acoustics, 35 Electrical interface specification, 39 Address Feature Set, 89 Electromagnetic compatibility, 36 Address Offset Feature, 85 Emergency unload, 28 Advanced Power Management (ABLE-3) feature, Environment, 23...
  • Page 226 Security Set Password, 155 Non-data commands, 93 Security Unlock, 157 Seek, 158 Seek Overlap, 87 Operating modes Seek time description, 16 average, 14 full stroke, 15 single track, 15 Packaging, 37 Sense Condition, 159 Performance characteristics, 14 Service life, 27 Physical cylinders, 12 Set Features, 160 PIO timings, 45...
  • Page 227 References in this publication to Hitachi Global Storage Technologies products, programs or services do not imply that Hitachi Global Storage Technologies intends to make these available in all countries in which Hitachi Global Storage Technologies operates. Product information is provided for information pur- poses only and does not constitute a warranty.

Table of Contents